JORDAN V1.5

Many new commands and features in this version

The Pascal compiler for the ti-83

By: Jeremy Holte

TOC

0

In the beginning READ THIS IF YOU HAVE USED V1.0

1

Introduction

2

History

3

Command line

4 Command list

5 Example program

6 Special thanks

7 Bugs

8 Conclusion

0
In the beginning

-You are now able to reuse your strings

-“Uses();” is now “shell();”

-ION support

-if statements

-for loops

-contrast

-code optimization {Command line}

-power

-mult/div

-lines

-compression {Command line}

-circles

-Detect programs

-run programs

-disppic now does the coping for you.

-ion libraries Check this out

-Im doing away any further support for SOS and ASHELL. sorry

1
Introduction

I’m lazy, so I didn’t feel like programming in ASM. So I wrote Jordan. The program is named after my daughter. It translates your source file into an ASM file, then compiles. That’s about it.

--

2
History

V1.0 b ¤ 9/3/06

-comments are recognized 9/3/06

-begining and end of file written to the ASM file 9/3/06

-can make it recognize commands and output then to an ASM file 9/3/06

-writing big text and little text. You can only have 100
strings in your program 9/3/06

V1.5 b ¤ 9/18/06

-pixel on and off 9/18/06

-sprites but you have to use VARS 9/18/06

-clear the graph 9/18/06

-2 byte VARS 9/18/06

-getkey and iskey 9/18/06

-lables and goto 9/18/06

-inc and dec 9/18/06

V2.0 b ¤ 9/23/06

-add and sub 9/23/06

-ret 9/23/06

-run indicator 9/23/06

-pictures 9/23/06 you have to copy the picture into the code your self

-shell support 9/23/06 SOS and ASHELL

-multiple ketpress 9/23/06

-inline ASM code 9/23/06

V1.0 The first release ¤ 9/23/06

-user defined source code file 9/23/06

-user defined output file 9/23/06

-automatically runs TASM 9/23/06

V1.25 The second release

-writing the same string twice without wasting one of your
100 strings. 9/24/06

-uses(changed to shell(9/24/06

-if statements 9/24/06

-for loops 9/24/06

-contrast change 9/24/06

-code optimization 9/24/06

-power off 9/24/06

-multiply and divide 9/29/06

-lines 9/29/06

-added compress 9/29/06

-disppic copies from file now 10/27/06

V1.5 The third release

-circles 10/02/06

-better for loops, use Pascal code instead of ASM 10/01/06

-more shell support ION 10/28/06

-Ions libraries 10/28/06

-if “shell(ion);” is used then ions sprite routines are used

 and fastcopy. 10/28/06

-large sprites (ion) 10/28/06

-Decided not to continue Ashell or SOS support. Use ion, its
 better. You can still use “shell(ashell/sos);” but I’m not
 adding anything else to them. Sorry, I found ION. 10/27/06

STILL TO COME

V2.0 The fourth release

-The IDE

-detect, protect/unprotect programs

-running programs basic/ASM

-registers

-system variables

-sizeable windows for clipping sprites and text.

V2.5
The final release

-external code units so people can write units for other calcs, or make their own language like c++.

I’m not going to
--

3
Command line
Jordan.exe FILENAME –s/ns –c/nc -o IN THIS ORDER!!!!!

FILENAME
=
The source file with out extention.

-s

=
Sprites, FILENAME.spr is where Jordan looks for

them

-c

=
Compress for DevPac83

-o

=
Optimize {Take out push and pop for speed}

-ns/nc
=
No sprites/No Compress. YES YOU HAVE TO USE THEM

TO GET TO THE NEXT OPTION, FOR NOW.
--4
Command list

Please note that all commands shouldn’t have caps except for EOF

My computer automatically caps them no matter what I do except when it doesn’t feel like it. so no caps except in user defined stuff like strings, or variable names.

Begin/end.

obvious

Var

The next lines until ‘begin’ are variables. Jordan

automatically assigns memory for them.

Ex.

Var

Var1

Var2

Begin

ASM{

inline ASM code

}

end inline ASM code

ex.

ASM{

ld hl, 15

push hl

ld hl, 25

}

code between {} will be copied directly into the

ASM file.

runindic(on/off);

run indicator on/off

getkey(group,var);

gets key press form key group GROUP

and stores it in VAR.

getkey uses the key codes I found in ASMguru

iskey(code,condition,label);

compares key press to key code,if condition is 0 then

jp z,label, if condition is 1 then jp nz,label, if

condition is 2 then call label.3= call z. 4= call nz

multkey(code1,code2,condition,label);

this ANDs the 2 codes and compares then to keys pressed,

both keys have to be in same group. Trust me it works.

Condition is same as iskey

Inc(var)/Dec(var);

Increments/decrements VAR

Add(var1,var2)/Sub(var1,var2);

Adds or subtracts var1 and var2, var1 holds answer.

Ret;

Ret

Goto(condition,label);

1.jp label

2.jp z, label

3.jp nz, label

4.call label

5.call z, label

6.call nz, label

lsprite(name,varx,vary,width in bytes, height in pixels);

puts sprite NAME at x,y. width must be in full bytes so

round up. Height can be 0 to 96. sprite must be in

FILENAME.spr. You should use the sprite maker I provide

Because it formats the sprites correctly for you. Just

Copy and paste.

sprite(name,varX,varY);

puts sprite NAME at x,y. sprite must be in FILENAME.spr

note. FILENAME.spr must end with ‘end.’ Or errors will

occur.

Ex. FILENAME.spr

Name:

.db %00000000

.db %00000000

.db %00000000

.db %00000000

.db %00000000

.db %00000000

.db %00000000

.db %00000000

Name2:

.db %00000000

.db %11110000

.db %00001111

.db %00000000

.db %11110000

.db %00001111

.db %00000000

.db %00111100

end.

Pixelon(varx,vary);/pixeloff(varx,vary);

Turns pixels on or off at x,y. x and y are not VARS

Pixeltest(varx,vary);

Tests if a pixel is on or off. Nz flag is set for true

Z flag is set for false.

Clrdrw;

Clears the graph screen.

Clrscr();

Clears the home screen.

^VAR:=#;

this is how you store # to VAR. the ^ is required.

:LABEL

this is how you do a label

disppic(picname);

puts a full screen picture on the graph screen. The

source file for the pics is FILENAME.pic

//

comments. They will be put into the ASM code with the

; infront of them. Comments must have there own line.

Write(####,####,label,’STRING’);

Writes ‘STRING’ to the home screen at ####,####

Note the first 3 # are 0 for both ex. 0001,0001

Outtextxy(####,####,label,’STRING’);

Same as above but writes to the graph screen. And

Only the first 2 ## have to be 0 for both ex. 0010

Rewrite(####,####,condition,NAME);

You know the # thing, condition 1-big 2-little, NAME is

String name.

Shell(SOS/ASHELL);

Makes program for SOS or ASHELL, not both, and you must

Compile it with the –c parameter. This comes after

Program NAME;

If(var1,var2,condition,label);

Condition 1-equal 2-not equal

For(var1,var2,label);

Decrement var1 to var2 and jumps to label.

Ex.

For(var1,var2,test);

 Begin

COMMANDS.

 End;

Contrast(var);

Sets the contrast to var. use ASMGURU for values.

Calcoff;

Turns off the calculator.

Mult(var,#);

Multiplies var by # and stores in var. will someday

Use 2 vars or 2 numbers also.

Div(var,#);

Same as above, but divide.

Line(#,#,#,#,condition);

Condition 0-off 1-on 2-switch.

Rand(var,#);

This is an ion command. Var is where it is stored. #

Is the upper bound.

EOF

You must put EOF in caps at the very end of your program

or Jordan will just hang up. I know its stupid but it

works.

5
Example Program

tboj.P83

//you can comment at the beginning of a program, other wise

//the first line has to be PROGRAM NAME;

//you must have ION and link it with devpac83

//this game isn’t finished because I meant it to show you how to program with

//JORDAN.EXE, not to write a rip off of another game. if you want to finish it //go ahead. I have explained a little of it so you can follow the code easier.

//Use enter for the title screen, 2nd for starting the game, and clear to quit.

program TOBJ;

shell(ion);

var

padx

pady

key

ballx

bally

dumx

check

dumy

dumn

dball

dball2

tile

count

dir

blockx

blocky

dblockx

dblocky

begin

:intro

rewrite(0000,0000,1,titlestr); …this line writes multiple lines

getkey(2,key);

iskey(254,1,intro);

clrscr();

clrdrw;

^dball:=4;

^dball2:=2;

^dir:=1;

^pady:=44;

^padx:=56;

^bally:=47;

^ballx:=60;

sprite(paddle,padx,pady);

sprite(ball,ballx,bally);

goto(4,drawboard);

:mainlp

getkey(2,key);

iskey(191,0,quit);

iskey(254,0,gamelp);

goto(1,mainlp);

:gamelp

sprite(ball,ballx,bally);

getkey(2,key);

iskey(191,0,quit);

getkey(1,key);

iskey(253,3,mpleft);

iskey(251,3,mpright);

^dumx:=2000;

^dumy:=1;

for(dumx,dumy,slowdown); …slows down the ball

begin

end;

asm{ …moves the ball

ld a, (dir)

cp 1

jp z, ru

cp 2

jp z, lu

cp 3

jp z, dr

cp 4

jp z, dl

}

:lu

^dir:=2;

asm{

ld a, (dball)

cp 32

call z, dochk

ld a, (check)

cp 1

jr nz, continue2

call z, chksquare …check to see if a square is hit

continue2:

ld a, (ballx)

cp 1

jp z, dl

ld a, (bally)

cp 1

jp z, ru

}

inc(dball);

inc(dball2);

dec(ballx);

dec(bally);

sprite(ball,ballx,bally);

goto(1,gamelp);

:ru

^dir:=1;

asm{

ld a, (dball)

cp 32

call z, dochk

ld a, (check)

cp 1

jr nz, continue3

call z, chksquare continue3:

ld a, (ballx)

cp 1

jp z, dr

ld a, (bally)

cp 95

jp z, lu

}

inc(dball2);

inc(dball);

dec(ballx);

inc(bally);

sprite(ball,ballx,bally);

goto(1,gamelp);

:dr

^dir:=3;

asm{

ld a, (ballx)

cp 62

jp z, checkcol …checks to see if paddle is hit

ld a, (dball2)

cp 31

call z, dntchk

ld a, (check)

call z, chksquare2 …checks to see if square is hit on way down

ld a, (bally)

cp 95

jp z, dl

}

dec(dball2);

dec(dball);

inc(ballx);

inc(bally);

sprite(ball,ballx,bally);

goto(1,gamelp);

:dl

^dir:=4;

asm{

ld a, (ballx)

cp 62

jp z, checkcol

ld a, (dball2)

cp 31

call z, dntchk

ld a, (check)

call z, chksquare2

ld a, (bally)

cp 1

jp z, dr

}

dec(dball2);

dec(dball);

dec(bally);

inc(ballx);

sprite(ball,ballx,bally);

goto(1,gamelp);

:dochk

^check:=1;

ret;

:dntchk

^check:=0;

ret;

:chksquare2

asm{

ld a, (bally)

ld (dumy), a

}

pixeltest(dumy,dball2);

asm{

call z, hitblock

}

ret;

:chksquare

asm{

ld a, (bally)

ld (dumy), a

}

pixeltest(dumy,dball);

asm{

call z, hitblock

}

ret;

:hitblock …doesn’t do anything yet

ret;

:checkcol

asm{

ld a, (bally)

ld (dumy), a

}

^dumx:=1;

pixeltest(dumy,dumx);

goto(3,hitpad); …hits paddle

goto(2,quit); …doesn’t hit paddle, quit

:hitpad

asm{

ld a, (dir)

cp 3

jp z, ur

cp 4

jp z, ul

}

:ur

^dir:=1;

sprite(ball,ballx,bally);

goto(1,gamelp);

:ul

^dir:=2;

sprite(ball,ballx,bally);

goto(1,gamelp);

:drawboard …this draws map1 to the screen

^dumx:=0;

^dumy:=0;

asm{

dloop:

ld hl, map1

push hl

pop ix

ld (tile), ix

ld a, 48

ld (count), a

}

:fndtile

asm{

ld ix, (tile)

ld a, (ix+0)

inc ix

ld (tile), ix

}

goto(4,drawtile);

asm{

ld a, (count)

cp 1

jp z, continue

call nz, incy

ld a, (count)

dec a

ld (count), a

}

goto(1,fndtile);

ret; …end of drawing the screen

:continue …goes back to the game

ret;

:incy

^dumn:=8;

add(dumy,dumn);

asm{

ld a, (dumy)

cp 96

call z, incx

}

ret;

:incx

^dumy:=0;

^dumn:=8;

add(dumx,dumn);

ret;

:drawtile

asm{

cp 1

call z, tile1

cp 2

call z, tile2

cp 3

call z, tile3

cp 4

call z, tile4

}

ret;

:tile2

sprite(b2,dumx,dumy);

ret;

:tile3

sprite(b3,dumx,dumy);

ret;

:tile4

sprite(b4,dumx,dumy);

ret;

:tile1

sprite(b1,dumx,dumy);

ret;

:mpleft …moves paddle

asm{

ld a, (pady)

cp 1

jp z, dnmove

}

sprite(paddle,padx,pady);

dec(pady);

sprite(paddle,padx,pady);

ret;

:mpright …moves paddle

asm{

ld a, (pady)

cp 87

jp z, dnmove

}

sprite(paddle,padx,pady);

inc(pady);

sprite(paddle,padx,pady);

ret;

:dnmove …don’t move paddle

ret;

:quit

clrdrw;

end.

:map1 …this is level 1

asm{

.db 1,1,0,0,3,4,4,3,0,0,1,1

.db 0,0,2,2,0,3,3,0,2,2,0,0

.db 3,3,3,3,2,4,4,2,3,3,3,3

.db 0,0,1,1,2,1,1,2,1,1,0,0

}

:titlestr

asm{

.db "Turbo Break Out"

.db " Writen with "

.db " JORDAN.EXE "

.db "By Jeremy Holte",0

}

EOF

6
Special thanks

I would like to thank James Matthews for ASMguru. Jordan would not be possible without it. Also MOVAX for his sprite program. I don’t remember where I got the idea for the pixels but the program didn’t work right and I fixed it so I’ll take credit for that part. If you recognize your code and you just have to have credit sue me and I’ll show you where your program didn’t work. Other than that I would like to thank you for trying Jordan. Please leave a review on ticalc.org and let me know if it is of any use to any one or I wont program the IDE, give it scrolling background support, or external code units so people can make it work for other calcs. By the way, im not going to write the units for the other calcs, so please don’t ask. I will give a readme file when it can handle them so someone else can though.

7
Bugs

I haven’t found any bugs, but if you do let me know in a review at ticalc.org and I’ll fix it.

If Jordan snags, try putting ‘EOF’ at the end of your source code or ‘end.’ at the end of the sprite file.

8
Conclusion

I hope you find this program useful. It is shipped as free ware under the GNU public license without any warranty. You may copy it, destroy it, hack it, give it away, but you cant sell it. I would include the source code but I’m a sloppy programmer and you probably wouldn’t learn anything from it. I just go with what works, not what’s right.

