T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON EIGHT:

e Math Applied to Constants
* The Soecial Purpose of HL
e Displaying Text

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

MATH APPLIED TO CONSTANTS

If you remember, .db is used to enter raw datatim calculator,
data which you access by the ram addresses in wneciata is
contained.

Let’s say, hypothetically, that you want to pragra four-color
grayscale game with black, white, light grey antkdaey. This
game—we can pretend, can’'t we—will be a four-plagetit-screen
multiplayer game, that allows each player to bailchr. There are five
values of data in particular: Color of car, colbmieels, type of car,
size of car, and speed of car. (Don’t compile)this

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

Truck .equ O ; A whole bunch of constants
Car .equl

Motorcycle .equ 2
Slow_Speed .equ 0
Medium_Speed .equ 1
Fast_Speed .equ 2
Small_Size .equ 0
Medium_Size .equ 1
Big_Size .equ 2

White .equ 0
Light_Grey .equ 1
Dark_Grey .equ 2

Black .equ 3

; Continued on next page

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Playerl:

.db White, Light_Grey, Truck, Small_Size, Slow_Speed
Player2:

.db Black, Dark_Grey, Car, Medium_Size, Fast_Speed
Player3:

.db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:
.db Black, White, Motorcycle, Small_Size, Medium_Speed

So then, you remember how to access data in aoleriaght? For
example, Id a, (Playerl). However, register A willy contain the
color White, meaning the number zero! Want to kivawy?

ASM RAM TRANSLATION,
ADDRESS ON| IN DECIMAL
CALCULATOR NUMBERS

#include “ti83plus.inc”

.org 40339
Id a, (Playerl) 40339 58, 40342
Playerl:
.db White, 40342 0,
Light_Grey, 40343 1,

Truck, Small_Size, Slow_Speed 40344 0,0,0

n Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

As you can see, register A accesses only whaside RAM
address 40342, and nothing after it! That is, ®&yertains to RAM
address 40342, which holds the first value of data, that is all that is
stored inside register A. Register A does noteetrvalues for any
addresses before and after 40342, in this caseh&bif you want to get
the other four values and store them in registe/G,©> and E? These
four values are stored in addresses 40343, 40884,53and 30346, so
how do you get them? You could create a labet&mh value and
therefore turn each value into a variable, but taat get quite tedious
and messy.

However, if you think of the label as just a camdf you can do
some math with the constant. In this case, Plaigeefjual to 40342,
which means that SPASM puts in the number 40342veder it comes
across Playerl. So what if you do a little matid add 1 to the
constant? For instance, Playerl + 1? Then SPA8INbwt in 40343,
which is 40342 + 1!

So, you can access the first value in Playerdla; (Playerl), the
second value using Id a, (Playerl + 1), the thalde by using Id a,
(Playerl + 2), etc.

You can also apply a minus sign to a constantd éren
multiplication and division! (Be careful with dsion. The calculator is
very picky when it comes to decimal numbers, analwdl usually only
get integers.) For instance, Playerl — 5 and Playé5, and Playerl /
15.

So why can you do this and not use multiplicatamtgition or
subtraction directly on registers? Why can’'t yay 4d a, e + 5?” This
Is because the processor, directly, can’t handbe Whenever there is a
value that has to change, the processor can ordp aouch to change it.

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

But the value for constants is set, and rememlagrctbnstants are
handled by SPASM, not by the calculator. When gpply addition,
subtraction, and multiplication to a constant befcompiling it, the
value is fixed, it will never change...a constant tiplied by a constant
Is still a constant. In other words, if you tetlly program to Id a,
(Playerl + 7), the program doesn’t translate iritod‘out what Playerl
+ 7 is equal to, and then put into register A wheatas inside of Playerl
+ 7.” Instead, the program translates into “pt iregister A whatever
is inside of RAM at address 40350.”

For this reason, you can use addition, subtractrantiplication
and limited division on constants. For instandeg,| 3+ 3 will translate
into Id a, 6. Similarily, Id a, 4 * 23 wil traregke into Id a , 92. Finally,
Id a, NumberSeven + NumberFour is the same aslldl.a,

n Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

THE SPECIAL PURPOSE OF HL

Now that you understand how you can access subaeqteas of
ram, let's look at an example of how to do thise Will use our
previous data, and store the color of the cargster b, the color of the
wheels in register c, the type of car in registeartd the size of the car
in register e. Register A will contain the speéthe car. The values
we load will depend on the player.

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

. in register A to decide what data to load.

cpl
rz, Load_Playerl Data
cp 2
jr z, Load_Player2_Data
cp3
jrz, Load_Player3_Data
cp 4
jr z, Load_Player4_Data

Load_Playerl Data:
Id a, (Playerl)
Id b, a
Id a, (Player1+1)
dc, a
Id a, (Player1+2)
Id d, a
Id a, (Player1+3)
Id e, a
Id a, (Player1+4)

ret

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Load_Player2_Data:
Id a, (Player2)
Id b, a
Id a, (Player2+1)

ldc, a
Id a, (Player2+2)
Id d, a
Id a, (Player2+3)

Id e, a

Id a, (Player2+4)

ret
Load_Player3 Data:

Id a, (Player3)

Id b, a

Id a, (Player3+1)

dc, a

Id a, (Player3+2)

Idd, a

Id a, (Player3+3)

Id e, a

Id a, (Player3+4)

ret

n Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Load_Player4 Data:
Id a, (Player4)
Id b, a
Id a, (Player4+1)
Idc, a
Id a, (Player4+2)
Id d, a
Id a, (Player4+3)
Id e, a
Id a, (Player4+4)

ret

Playerl:
.db White, Light_Grey, Truck, Small_Size, Slow_Speed

Player2:

.db Black, Dark_Grey, Car, Medium_Size, Fast_Speed
Player3:

.db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed
Player4:

.db Black, White, Motorcycle, Small_Size, Medium_Speed

Okay, so this works, but you notice how much sghetakes?
You also notice that if you were to write a simifaogram in Ti-Basic,
you wouldn’t have to make a 4x copy of your simpdele. The problem
IS, you have to pick a different constant, a ddfdérram address, each
time. This is because of the function Id a, (Valuwehich calls for a
strict value, a strict ram address. What we neéd ioad register A
with an address that can change.

n Lesson Eight: Math Applied to Constants, The Special Purpose of HL,; Displaying Text

AND DON'T GET ME
WRONG, | LOVE YOU JUST
THE WAY YOU ARE...

I WAS THINKING,
WE'VE BEEN GOING OUT

AND VOILA!
YOU'RE PERFECT!

JUST THINE OF THEM AS LI'C
IMPROVEMENTS, TWERAY OF
HAIR HERE, CLOTHES...

In a perfect world, we could load a ram addrets anregister
depending on what player we want to load. In &goéworld, we could
use this value to access the car color for thegpJand then increase the
value in the register to access the next valuetd dn RAM) for the
car, aka the color of the wheels. On the next pager perfect world
program, using the register H to hold the ram agkire

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

; in register A to decide what data to load.

cpl
jrz, Load_Playerl Data
cp 2
jrz, Load_Player2_Data
cp3
jr z, Load_Player3_Data
cp 4
jr z, Load_Player4_Data

Load_Playerl Data:
Id h, Playerl
call Load Player Data
ret
Load_Player2_Data:
Id h, Player2
call Load Player Data

ret

Load_Player3_Data:
Id h, Player3

call Load_Player_Data
ret
Load_Player4 Data:
Id h, Player4
call Load_Player Data

ret

; Continued on next page

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Load_Player_ Data:
Id a, (h) ; In a perfect world, h contains the ram address to load from
Id b, a
inc h
Id a, (h)

Id c, a
inc h

Id a, (h)
Id d, a
inc h

Id a, (h)
Id e, a
inc h

Id a, (h)

ret

Playerl:
.db White, Light_Grey, Truck, Small_Size, Slow_Speed
Player2:
.db Black, Dark_Grey, Car, Medium_Size, Fast_Speed
Player3:
.db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:

.db Black, White, Motorcycle, Small_Size, Medium_Speed

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

But let’s face the facts: it's not a perfect worldemember that H
cannot be bigger than 255? Most RAM addressesach bigger than
255!

Oh, but this was so much smaller (and would befaghan using
constants! Oh, if only we could do something likis in a Z80 ASM
program.

Oh, but we can! It's just we can’t use a one-lrgtgister, as it
only goes up to 255. H and L are both one-bytestes. But, what
happens when you put one byte and one byte togetiieu get TWO
bytes! Simple math® Oh, and 2 bytes can go up to 65535, which, as
you can tell, is high enough to store RAM addresses

So you use HL (H and L put together) to store RAdMiresses.
Then, as you might expect, you use (HL) to accdssever is inside of
the RAM pointed to by HL. Use Id hl, 2-byte valigestore a value into
hl, such as LD HL, 12482.

By the way, if you use a fixed humber/constardttoe a RAM
address and retrieve whatever is inside of it, gam only use register A
to do so. BUT when you use HL, you can immediastbye it to any
one-byte registerWhenever you see a function, such asld, that hasa
parameter of a one-byteregister, you can also use (HL) inside that
parameter.

For example, instead of

Id a, (Playerl)
Id e, a

Y Ou can use

|d hl, Playerl

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Id e, (hl).

This will give us VAST improvements to our data-essing program.
You can use INC and DEC functions on HL by the way.

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

. in register A to decide what data to load.

cpl
call z, Load_Playerl Data
cp 2
call z, Load_Player2_Data
cp3
call z, Load_Player3 Data
cp 4
call z, Load_Player4 Data

call Load Data_Into_Registers

Load_Playerl Data:
Id hl, Playerl
ret

Load_Player2 Data:
Id hl, Player2
ret

Load_Player3 Data:
Id hl, Player3
ret

Load_Player4 Data:
Id hl, Player4

ret

; Continued on next page

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Load_Player_ Data:
Id b, (hl)
inc hl
Id c, (hl)
inc hl
Id d, (hl)
inc hl
Id e, (hl)
inc hl
Id a, (hl)

ret

Playerl.:
.db White, Light_Grey, Truck, Small_Size, Slow_Speed
Player2:
.db Black, Dark_Grey, Car, Medium_Size, Fast_Speed
Player3:
.db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed
Player4:

.db Black, White, Motorcycle, Small_Size, Medium_Speed

You can also use (hl) to store values into vargble
For_ example, instead of

Id a,1

Id (Playerl), a

Y ou can use

Id hl, Player 1
Id (hl), 1

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

DISPLAYING TEXT

Now that you understand on how HL is used to stbhamging,
non-constant RAM addresses for data access, we can start playithg
functions that require HL as a parameter. Aftadreg the title, you
might wonder, “why do we need HL to display textBécause text is
stored as pure, unaltered data with .db, meayongieed a label! And
since labels pertain to RAM addresses, HL is usexttess this label.

Since .db is used to enter raw data, you cantusestore strings.
However, there is a catch, nothing that you nedzktooncerned about,
and actually something that gives you an advantage.

Remember that a translated ASM program, in the eonsists of a
whole bunch of numbers. When your calculator starstring, it's
stored as a bunch of numbers. When your calcutegeds to display
the string, these numbers are, when the prograommigng, translated
into their respective characters so you see thethencreen as letters.

For example, the letter “A” is the number 65, #mel letter “C” is
the number 67. So if you need your calculatorispldy “ACA,” your
program should contain the numbers 65 67 65, iarottords .db 65, 67,
65. When ordered to display this data as a styiagy calculator will
read these numbers and translate them onto thensaseACA.

The advantage is that you can display charactarsyprmally
couldn’t display in Ti-Basic! For instance, whayou wanted to
display the “blinking block” you see on the textesen all the time?

.The number for this character is 224. So by pgttib 224 in
your program and telling your calculator to dispiiags a string,
the calculator will see the number 224 and disghas/block

character.

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

However, let’s face it, .db Number, Number, Numfzgra bunch
of letters can be tedious. Looking up the numétremslations for a
bunch of characters is very time-consuming. Tlgag,can enter strings
directly as well with .db.

For example,
Text:
.db “Hello World”, “This is my string”, 224, 65,7% 67, 65, etc.

Of course, you can combine string data and numbach as with
the above example.

It's just important to understand that the stimgtored as
numbers, just in case you want to use letters wmibsls that your
computer doesn’'t supply, such as the arrows younseée calculator for
scrolling menus.

The built-in function PutS will take the numerickdta, and
translate them into letters that are placed orstineen as text you can
see.

B_CALL _PutS

Displays a string specified by the label stored in HL. The string

must end in a zero, or an error occurs. The zero tells the
calculator where the string ends.

Examples: LD HL, String
B_CALL _PutS
String:
.db “Hello World”, 0

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

As a reminder, | don’t recommend you copy this paogdirectly, in
case “copy-and-paste” bugs occur. You should eetlypourself.

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

HelloWorldString:

.db “Hello World”, O

Wouldn't it be if we could put the string anywheve want?

If you read chapter three, you remember that thautzor has
special areas of RAM reserved for its uses, eatl i@ own addresses.
For displaying text on the main screen, the catoulkeeps track of the
location of the cursor using curCol and curRow—adales if you will.
curCol is a constant, and so is curRow. curRoavgsnstant for RAM
address 33867. The RAM at 33867 is used for sjosinat row—the
first row, row O; the second row, row 1; the thicav, row 2; etc.—the
cursor is on the home screen. curCol is right afteRow in terms of
location/address, and is used to store what coluthte-15—the cursor
Is located. By manually specifying a row and auoah, we can tell the
calculator where we want our text. Add the linebslue on the next

page.

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

#include “ti83plus.inc”
.org 40339
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id a, 3

Id (curRow), a
Id a, 2

Id (curCoal), a

Id hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

HelloWorldString:

.db “Hello World”, O

Remember, the first row is row 0, and the firsuooh is column O.

Some exercises are on the next page. Next lesstinearn about
other two byte registers, by putting D and E togethnd by putting B
and C together.

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

Exercises: Write programs to display strings atdpecified positions
on the screen.,

1.
2.

The string “Get a grip” at anywhere in particular

The string “This is fun!!” on the first row, theréit column

. The string “Ti-83+ Z80 ASM" in the second columndate 4"

row

. The string “A” in the 18 column, the 6 row
. The string “Hello World” preceded by an up arrowvdgroceeded

by a down arrow. The numerical value for an up\aris 30, and
the numerical value for a down arrow is 31. Digptdn the 3°
Column and the2row.

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

ANSWERS:

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id hl, String

B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

String:

.db “Get a grip”, O

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Ida, 0

Id (curRow), a
Ida, 0

Id (curCol), a

Id hl, String

B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

String:

.db “This is fun!!”, O

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id a, 3

Id (curRow), a
Ida, 1

Id (curCoal), a

Id hl, String

B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

String:

.db “Ti-83+ Z80 ASM”, 0

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id a, 5

Id (curRow), a
Id a, 15

Id (curCol), a

Id hl, String

B_CALL PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

String:

.db “A”, 0

Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull

Id a, 3

Id (curRow), a
Id a, 2

Id (curCol), a

Id hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _CIrLCDFull
ret

HelloWorldString:

.db 30, “Hello World”, 31, 0

