
 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 1

TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON TWELVE:

• Storing and Retrieving Values Larger
Than One Byte

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 2

STORING AND RETRIEVING VALUES
LARGER THAN ONE BYTE

 As a review from Lesson 5, you can stores values to variables by
using register A. You can also retrieve values from those variables by
using register A.

 Have you ever played Donkey Kong Country? (As a big thank you
for the time I spent putting these lessons together, I’d love to see
someone make Donkey Kong Country for a Ti-83+ or Ti-84+)

 Donkey Kong can collect up to 100 bananas, and then he gains an
extra life. Then the number of bananas is reset to zero. Thus, the

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 3

number of bananas can never exceed 255. So if someone decided to
make a Donkey Kong Country game for a Z80 processor, register A
would be perfect for this.

; Donkey Kong has collected 5 bananas

ld a, (Number_Of_Bananas)

add a, 5

ld (Number_Of_Bananas), a

 For a game that requires a high score, however, one byte of
numbers is not going to be enough…255 is way too much of a limit for
high scores. And what about when your calculator has numbers such as
256, 341? That’s WAY bigger than 255.

YET, the Z80 processor can do such things. In other words, since
one-byte values aren’t enough for everything, I’ll show you throughout
the lessons how to handle the bigger numbers. However, you need to be
aware that the bigger the number is, the harder it is to work with said
number. Even storing and retrieving values for two-byte numbers (0 –
65535) requires a little bit of work. This lesson, we will focus on
variables holding 2-byte values.

 You can only use Register A directly to store and retrieve values
that are one byte in size. However, you can use HL, DE, and BC to
store and retrieve values TWO bytes in size.

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 4

For this example program, I will be using hexadecimal numbers.
(Remember that hexadecimal numbers are just numbers, a different
“language” of numbers.) I am doing this because when you put two
hexadecimal numbers together (such as 2 registers), you get the same
number. If register H = $EF and register L = $23, HL = $EF23. (Recall
Lesson 12.) However, with decimal numbers, this is not the case. If H
= 10 and L = 234, HL does not necessarily equal 10234. For this lesson,
it is important to visualize HL as H and L put together.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 ld de, $FC23 ; $FC23 in hexadecimal is equal to the number 64547

 ld (Score), de

 ld hl, (Score)

 B_CALL _DispHL

 B_CALL _getKey

 ret

Score:

 .dw 0 ; Since we are storing and retrieving the value of a 2-Byte number, we use dw instead of db.

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 5

What happens is instead of using one register (A) to store a one-
byte value, two bytes (H and L, D and E, etc) are used to store two one-
byte values. Just remember that a two-byte variable requires—of
course—two bytes of RAM.

So, are you ready to call me a liar? Seems too easy, huh? It does.
Well, before you toss out the lesson and decide that I don’t know my
right hand from my left hand, try the next example program.

What? When _DispHL is called, do you see the value 64547? No,
you should see 9212.

I suspect that the Ti-83+ processor was designed on April Fool’s
Day, because the designers most likely decided to play a big joke on
developers.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 ld hl, (Score)

 B_CALL _DispHL

 B_CALL _getKey

 ret

Score:

 .db $FC

 .db $23

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 6

Here’s the deal: LD HL, (Score) is the same as saying the
following:

LD L, (Score)

LD H, (Score + 1)

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 7

Why is it not the other way around? Why not H first, and then L?
That’s the joke. The people who made the processor were trying to be
funny. (Okay, so I don’t know the real reason. But let me have some
fun ☺)

This happens also with ld DE, (Two-Byte Variable) and ld BC,
(Two-Byte Variable). E is retrieved before D is, and C is retrieve before
B is.

Why, then, did we not have any issues in the first example
program? Because the registers are also switched with ld (Two-Byte
Variable), HL/DE/BC. ld (score), HL is the same as saying

ld (score), L

ld (score + 1), H

As you will see in the diagram on the next page, (illustrating the
first example program), this “reversing of values” occurs twice. So
when you reverse the position of two values, and then reverse them
again, you get back where you started.

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 8

 Lesson Twelve: Storing and Retrieving Values Larger Than One Byte 9

This “reversing of values” that occurs with 2-byte variables and
registers is known as little-endian. I’m telling you this so that when
you ask for help and people bring up this term, you know what they’re
talking about. The important thing is, remember that if you
store/retrieve values of 2-byte variables using two-byte registers, L will
get stored/retrieved first, than H. E comes before D. C comes before B.

By the way, with SPASM, (be careful, this technique is for
SPASM) you can replace the two .db statements with either .dw $FE23
or .dw 64547. Why did I not do this in the first place? Because I
wanted you to be aware of the little-endian problem. SPASM takes the
.dw statement and places the numbers in the right positions so as to help
avoid the little-endian problem. But NOT ALL COMPILERS DO
THIS. Be very careful when working with .dw, and make sure you
know how your compiler handles little-endians.

