
 Lesson Thirteen: Index Registers, Floating-Point Numbers 1

TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON THIRTEEN:

• Index Registers

• Floating-Point Numbers

 Lesson Thirteen: Index Registers, Floating-Point Numbers 2

INDEX REGISTERS

 Before I begin this lesson, I want to say that we are drawing to a
close. Soon you will be ready to progress to the advanced world of
ASM, which these lessons are meant to prepare you for. Wonderful job
for making it this far!

Getting back on track, the Ti-83+ processor provides a couple of
two-byte registers for special use. These registers are called index
registers, and for a reason.

 So, what do you think of when you hear the word “index?” Do
you think of your index finger? Do you think about the index at the
back of a school book? Or, how about indexing as in index cards?

 Think about it. Let’s say you are studying in a zoology class, and
you need to prepare for a test that quizzes you on terms. You would
probably write some terms on index cards. Then you keep these index

 Lesson Thirteen: Index Registers, Floating-Point Numbers 3

cards together as a group, and you can access your terms to prepare for
the test simply by using your index cards.

 Now, if you’re a smart person, you’d probably keep them in
alphabetical order. Like so:

 Alligator, Bear, Chicken, Dragon, Elephant, Fish, Gorilla, Hippo,
Iguana, Jackel…

 So now, you have all these cards in alphabetical order. So what
are you going to do if you only need to look up “Gorilla?” Are you
going to flip each card in search of Gorilla? I certainly hope not!
Because now that all the cards are in alphabetical order, you can find
your card “Gorilla” almost instantly!

 Let’s apply this to programming. Suppose that you have some data
that you need to keep organized. Here’s a list of heights, in inches, for
people in a classroom:

Let’s say that a girl named Suzie is always the sixth person on the
list whenever there is a list of people in the classroom. She is the sixth
person in the attendance list, and she is the sixth person on the list of
who’s doing chores. This is because the teacher likes to keep her lists
well-organized and easy to work with.

Furthermore, Bob is the 9th person in the list, Sarah is number 13,
Chewy is number 18, and Jason is number 23.

Heights:

.db 45, 45, 45, 45, 45, 46, 47, 47, 48, 48, 48, 48, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 52,

52, 53, 53, 54, 55, 58, 60

 Lesson Thirteen: Index Registers, Floating-Point Numbers 4

So let’s say that the teacher is using her calculator to find the
height of these good little students because she forgot their heights. But
she’s using a Ti-83+ calculator with the Ti-Basic section corrupted, so
she can only access this data by writing and running an ASM program.
(Guys, let’s just pretend, okay?)

What is she going to do? We did something like this once before
when we looked at the characteristics of cars and trucks. Our solution
was to LD HL, Label + Offset. For instance, Suzie is at Height + 5, and
Chewy is at Height + 17.

 However, at that time, we knew exactly where all the data was,
because the location of the data was marked by a label. What if the
location of this data of heights cannot be marked by a label? For
example, let’s say that the teacher’s data is stored inside of an
application variable, and this application variable is stored in RAM. As
a programmer in Ti-Basic, I assume that you know that this application
variable can be in different locations in RAM at any moment, depending
on how much data/programs/etc. are added to RAM or deleted from
RAM.

Thus, the location of the data is not consistent. Because of this, we
can’t say, for instance, LD HL, Height + 5 or LD HL, Height + 11.
(Remember, Height, Height + 5 and Height + 11 are just representations
of specific RAM locations, and just a reminder that this data in the
application variable is not always in the same RAM location) We can
still store the beginning of the data in HL, but we can’t use labels to do
so.

Let’s say that the teacher found the location in HL. So now she
could use the following code to access the heights of Suzie, Bob, Sarah,
Chewy and Jason.

 Lesson Thirteen: Index Registers, Floating-Point Numbers 5

 Well, this works, but it’s long and complicated. And
there’s another thing to consider: What if we need to access this data
again very quickly? HL is used quite frequently in a program. Can you

 ld de, 5

 add hl, de ; HL points to the first person in the list.

 ; Since Suzie is number six in the list, we add 5 to HL

 ; to get to the sixth person in the list.

 ld a, (hl) ; Register A will contain the value of Suzie’s height.

 ld de, 3

 add hl, de ; Data location + 8

 ld b, (hl)

 ld de, 4

 add hl, de ; Data location + 12

 ld c, (hl)

 ld de, 5

 add hl, de ; Data location + 17

 ld d, (hl)

 ; BE CAREFUL! Register D contains a value, so we need to save it!

 push de

 ld de, 5

 add hl, de ; Data location + 22

 pop de

 ld e, (hl)

 Lesson Thirteen: Index Registers, Floating-Point Numbers 6

imagine how much pushing, popping, and saving of values is required
when we use HL to access heights very, very frequently?

 Let’s use IX to recover values from our data. This is
where you’ll see the use of IX and IY. Suppose that IX points to the
beginning of wherever the teacher’s data for heights is, just like HL did.

 Could it really be this simple? Yes, yes, yes! This is what
is so special about IX and IY. You can use it to easily access data found
in lists. You cannot do this with HL, at least not this way.

 But there’s more! (What? There’s more?) IX and IY can
do almost anything that HL can do. You can do math with IX and IY.
You can point to RAM addresses using IX and IY. And, you can push
and pop IX and IY. These registers are perfect to use if HL is tied up
and you need to do some math.

 There must be a catch though, right? Right. In fact,
there’s several catches.

1. First and foremost, IX and IY are twice as slow as HL, and require more
bytes for instructions than HL does. (For instance, ADD HL, DE
requires only one byte, but ADD IX, DE requires two bytes.)

2. IX and IY cannot exchange their values with DE.

 ld a, (IX + 5) ;Suzie’s height

 ld b, (IX + 8)

 ld c, (IX + 12)

 ld d, (IX + 17)

 ld e, (IX + 22)

 Lesson Thirteen: Index Registers, Floating-Point Numbers 7

3. With HL, you are able to use H and L as individual bytes. You can do
this with IX and IY, but then your program will not run on a Ti-Nspire.
(See the Appendixes for more information.)

4. Use of IY is not recommended for beginners, and these lessons will not
encourage changing its value. The Ti-83+ uses IY extensively, so if you
try to mess with it without knowing how, you can crash your calculator.
You will learn later what to do about IY, but don’t try to show off by
purposely and needlessly incorporating it into your program.

5. Finally, when you select an offset for IX/IY (such as IX + 16, where 16
is the offset), your offset can only be a number from -127 to 128.

 So, you should stick with HL when your processor needs
beefy, intensive work done. IX (remember, be very, very cautious with
IY) should be used for data access / math only when HL is tied up or
when you need to access several areas in the same space of data. But
just remember, if you frequently need to access an area with a whole
bunch of data, IX will save you a lot of time and processing power, and
keep you from going insane. As you program more and more, you will
understand times when it is important to choose index registers over HL.

 Lesson Thirteen: Index Registers, Floating 8

FLOATING

 Since your Ti-83+ calculator is capable of doing decimal
arithmetic, such as 1.5 + 2.25, it is logical to assume that you can use
decimal numbers and floating
purpose of these lessons, we are only going to work with Real Numbers,
not Complex Numbers.

As you learned from previous lessons, you use Registers to do the
actual computations for an ASM
only store integers, and then these integers cannot be bigger than 65535
in value. Thus, we need to use
calculator’s RAM—to wo
registers are called OP Registers.

The calculator provides 6 OP registers, c
OP4, OP5, and OP6. These are really constants/labels for special areas
of RAM, so you need to use them as such. For instance, you can say
“LD HL, OP1,” but you can’t say “LD OP1, 4.352”. So how do we
store a value to an OP register?
number in our program as a variable. Then we copy the number
LDIR, since LDIR is used to copy data from one RAM location to
another RAM location.

Floating-Point Numbers

FLOATING-POINT NUMBERS

83+ calculator is capable of doing decimal
arithmetic, such as 1.5 + 2.25, it is logical to assume that you can use
decimal numbers and floating-point numbers in Z80 ASM. For the
purpose of these lessons, we are only going to work with Real Numbers,

As you learned from previous lessons, you use Registers to do the
an ASM program. However, regular

s, and then these integers cannot be bigger than 65535
in value. Thus, we need to use special registers—located in the

work with floating-point numbers. These
OP Registers.

The calculator provides 6 OP registers, called OP1, OP2, OP3,
These are really constants/labels for special areas

of RAM, so you need to use them as such. For instance, you can say
“LD HL, OP1,” but you can’t say “LD OP1, 4.352”. So how do we
store a value to an OP register? First we need to store our floating
number in our program as a variable. Then we copy the number
LDIR, since LDIR is used to copy data from one RAM location to

NUMBERS

83+ calculator is capable of doing decimal
arithmetic, such as 1.5 + 2.25, it is logical to assume that you can use

ASM. For the
purpose of these lessons, we are only going to work with Real Numbers,

As you learned from previous lessons, you use Registers to do the
regular registers

s, and then these integers cannot be bigger than 65535
located in the

These

alled OP1, OP2, OP3,
These are really constants/labels for special areas

of RAM, so you need to use them as such. For instance, you can say
“LD HL, OP1,” but you can’t say “LD OP1, 4.352”. So how do we

First we need to store our floating-point
number in our program as a variable. Then we copy the number using
LDIR, since LDIR is used to copy data from one RAM location to

 Lesson Thirteen: Index Registers, Floating-Point Numbers 9

 Now, since a floating-point number is not an integer, we have a
special way to tell the calculator exactly what the number is. A floating-
point number on the calculator takes 9 bytes of RAM and can have 14
digits. As you probably know, the calculator only displays 10 digits, but
you can use the last 4 digits in your number for extra precision.

 The first byte will be one of four different values, but since we are
working with only Real Numbers, we only need be concerned with two
of them. This first byte will equal 0 if the number is positive, and 128 if
the number is negative.

 The second byte in your floating -point number is the number of
digits and the exponent of your floating-point number. If this second
byte is equal to 128, your floating point number has one digit, followed
by a decimal point and then the rest of your 14 digits. If the second
byte equals 129, you have two digits, a decimal point, and the rest of
your digits. This pattern continues up to a value of 137, giving you a 10
digit floating-point number. As you probably noticed when performing
calculations on a Ti-83+, this is the biggest number of digits you can
display, after which you enter scientific notation starting at 1011. So if
your second byte equals 138 and up, you will have an exponent at the
end of your number. (138 = 10 11 , 139 = 10 12 , 145 = 1018, etc.) If your
second byte is less than 128, your floating point number will have a
negative exponent. For example, 127 will equal 10-1.

 The last 7 bytes of data are the actual digits of your floating point
number. Be careful here. You store 2 digits per byte for 14 digits. How
do you do that? By hexadecimal! Review the section on Hexadecimal if
you need to, but recall that a digit of hexadecimal equals
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E or F. (It’s not just 0,1 like binary or 0-9 as
in decimal.) Now, did you notice that one byte of data has 2 digits when
you use hexadecimal? Make a note of that. So for every two digits, use

 Lesson Thirteen: Index Registers, Floating-Point Numbers 10

a hexadecimal number, with 0-9 for each digit. $24 will equal the 2-
digit number 24, and $99 will equal the two-digit number 99. Pretty
cool, huh?

 So let’s create some floating point numbers! Here are some
examples.

Floating_Point_Number:

.db 0, 128, $92, $34, $57, $38, $12, $88, $21

; Equals 9.2345738128821

Floating_Point_Number_2:

.db 128, 120, $46, $20, $12, $00, $00, $00, $00

;Equals -4.62012 x 10-8

Floating_Point_Number_3:

.db 0, 136, $12, $34, $48, $82, $99, $12, $12

;Equals 12344899,1212

 Lesson Thirteen: Index Registers, Floating-Point Numbers 11

 Now, although the calculator provides many, many B_CALL
functions to do math on floating-point numbers, we need our floating-
point number stored in OP1 and, in some cases, OP2. We use LDIR for
this.

 Rather than go into details, I’ll end this lesson with an example
program with some B_CALL functions and lots of comments. We have
a floating-point number, 1.5234523452345. We will start by displaying
the floating-point number. Then we will multiply it by 3, and display
the result. Add 1, display the result. Subtract 2, display the result.
Finally, divide by 4.23 and display the result.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 ; Our floating point number, 1.5, is stored as a variable two pages below

 B_CALL _ClrLCDFull

 ld HL, Starting_Number

 ld DE, OP1

 ld BC, 9 ;A floating-point number is nine bytes long

 ldir

 SET fracDrawLFont, (IY + fontFlags) ;This allows us to display our floating-point number

 ;as big text on the home screen. Otherwise,

 ;the number will display as small text.

 ld hl, 0 ;Where we want to display the result on the screen

 ld (penCol), hl

 ld a, 11 ;Don’t worry about this for now. A should always be this value before

 ;DispOP1A for the purpose of these lessons, in order to display 10 digits

 B_CALL _DispOP1A

 B_CALL _getKey

 Lesson Thirteen: Index Registers, Floating-Point Numbers 12

 LD HL, Multiply_OP1_By_Three

 LD DE, OP2 ;Multiplication requires two numbers, so OP2 holds our second one.

 LD BC, 9

 LDIR

 B_CALL _FPMult ;Multiply 1.5 by 3

 ld a, 11 ;Displays 10 digits

 ld hl, 0 ;Where we want to display the result on the screen

 ld (penCol), hl

 B_CALL _DispOP1A

 B_CALL _getKey

 LD HL, Add1

 LD DE, OP2 ;Addition two numbers, so OP2 holds our second one.

 LD BC, 9

 LDIR

 B_CALL _FPAdd

 ld a, 11 ;Displays 10 digits

 ld hl, 0 ;Where we want to display the result on the screen

 ld (penCol), hl

 B_CALL _DispOP1A

 B_CALL _getKey

 LD HL, Subtract2

 LD DE, OP2 ;Subtraction requires two numbers, so OP2 holds our second one.

 LD BC, 9

 LDIR

 B_CALL _FPSub

 ld a, 11 ;Displays 10 digits

 ld hl, 0 ;Where we want to display the result on the screen

 ld (penCol), hl

 B_CALL _DispOP1A

 B_CALL _getKey

 LD HL, Divide_By_4_23

 LD DE, OP2 ;Division requires two numbers, so OP2 holds our second one.

 LD BC, 9

 LDIR

 B_CALL _FPDiv ;Multiply 1.5 by 3

 ld hl, 0 ;Where we want to display the result on the screen

 ld (penCol), hl

 ld a, 11 ;Displays 10 digits

 B_CALL _DispOP1A

 B_CALL _getKey

 ret

 Lesson Thirteen: Index Registers, Floating-Point Numbers 13

Starting_Number:

 .db 0, 137, $15, $23, $45, $23, $45, $23, $45

Multiply_OP1_By_Three:

 .db 0, 128, $30, $00, $00, $00, $00, $00, $00

Add1:

 .db 0, 128, $10, $00, $00, $00, $00, $00, $00

Subtract2:

 .db 0, 128, $20, $00, $00, $00, $00, $00, $00

Divide_By_4_23:

 .db 0, 128, $42, $30, $00, $00, $00, $00, $00

