
 Appendix A: Creating Flash Applications with SPASM 1

TI-83+ Z80 ASM
for the Absolute

Beginner

APPENDIX A:

• Creating Flash Applications with
SPASM

 Appendix A: Creating Flash Applications with SPASM 2

CREATING FLASH APPLICATIONS
WITH SPASM

I assume that as a Ti-83+ user, you know what an application
is. And the nice thing about an application is, you can write very
long ASM programs. As you probably know, a normal ASM
program cannot be bigger than 8 kilobytes, but an application can
be as large as your calculator archive will allow.

However, you need to be aware that applications do not run
from RAM. They run from ROM. Furthermore, the calculator
needs to know that your ASM program is actually an application.
So we have some adjustments to make your program an
application.

Please do not try to run any applications you create until read
this entire lesson. There are some things you can do with an ASM
program that you cannot do with an application, and I need to tell
you what those are.

To create a Ti-83+ application, you need a special include
file that I have provided. Do you remember how you always
needed to type #include “ti83plus.inc” at the beginning of all your
ASM programs? After that, you need to type #include “app.inc” if
you are creating an application. And just like with ti83plus.inc,
make sure you have app.inc in the same folder as your ASM
application.

#include “ti83plus.inc”

#include “app.inc”

 Appendix A: Creating Flash Applications with SPASM 3

Now you need to decide whether you want a multi-page
application or a single-page application. Most of the time, you’ll
want to write a single-page application, which provides you with a
maximum size of 16KB. But if you want to write a very big
application, you will need more than one page. The point I’m
coming to is, you will need at least one .asm file for every page of
the application that you write.

So let’s say we are writing a single-page application, with
one page. This is called page 0. (So the second page is page 1, the
third page is page 2, etc.) After #include “app.inc,” type in the
following:

defpage(0, The Name of Your Application In Quotes)

SPASM now knows that this file is page zero of your
application. In this case, page zero is our only page.

The name of your application can be no longer than 8
characters. For example,

defpage(0, “Hello”)

defpage(0, “TestASM”)

defpage(0, “PlayGame”)

The very, very last line of your application should be the
following: validate() Also, take out the .org $9D93 line and the
.db t2ByteTok, tAsmCmp line. These are used only for ASM
programs, not applications.

 Appendix A: Creating Flash Applications with SPASM 4

When you build your application with SPASM, DO NOT
type .8xp at the end of your program name. Instead, type .8xk at
the end.

That’s all there is to it! You now have a one-page
application. However, there’s a bit more work involved when you
want to create a multiple-page application.

First of all, recall that you should have one .asm file for every
page your application requires. Then you need to include these
files by typing #include before validate().

Let’s say you have a very big application that requires 3
pages (48 KB). So you need three files. One is your main
program, the first page, page 0. We’ll call it pagezero.asm. Let’s
say your second file is called pageone.asm and your third file is
called pagetwo.asm. On pagezero.asm, before validate(), you
should have the following:

#include “pageone.asm”

#include “pagetwo.asm”

For pageone.asm, at the top, you need the line defpage(1).
For pagetwo.asm, at the top, you need the line defpage(2).

When SPASM compiles your application, anything you
typed on pageone.asm will go into page 1, the second page of your
application. Anything you typed on pagetwo.asm will go into page
2, the third page of your application.

Now, the thing you need to be aware of is, the Ti-83+ can
only run one page at a time, starting with page zero. If you

 Appendix A: Creating Flash Applications with SPASM 5

need to run some code on another page, you need to switch pages.
If your Ti-83+ is running some code on page 0 and you need it to
run code on page 2, you need to switch to page 2 of your
application. Again, if the Ti-83+ is running code on page 1, it will
not run code from page 0 until it switches to page 0.

The good news is that the calculator handles all the page
switching. The bad news is that the calculator does not know
which page to switch or WHEN to switch it. You have to tell it
where to go. Your application will need what’s called a branch
table. The branch table is where you put labels that you need to
access on a page DIFFERENT from the page you are on.

Let’s say you have Label_Draw_Picture, on page 0 of your
application. If you need to CALL it, JR it, or JP it from page 0,
and ONLY from page 0, you do not need to place it in the branch
table. However, if you need to access Label_Draw_Picture from
another page of your application, you do need to put it in the
branch table.

Likewise, suppose Label_Draw_Picture is on page 3 of your
application. If you CALL it, JP it or JR it from page 0, 1, 2, 4, 5,
etc., you need to place this in the branch table. If
Label_Draw_Picture is ONLY used on page 3, you do not need to
put it in the branch table.

So, what is this—branch table, and where do we put it?
Well, this branch table needs to be before all of your code. At the
place where your code actually starts, type in the label Start

Start:

 Appendix A: Creating Flash Applications with SPASM 6

Then, before all your code, type in the following:

jp Start ;Goes to the start of your code

.db 0

Now, this is where you tell your calculator where all the
labels are, the labels that you need to CALL, JP or JR from
different pages. All this information should go before the label
Start. For every label you need to access on multiple pages, you
type in the following:

.dw Label_Name

.db Page Number

Suppose you have a label on your second page called
Access_Sprite_Data, and you need to call it from your first page.
Remember, your first page is called page 0, and your second page
is called page 1.

.dw Access_Sprite_Data ;The label

.db 1 ;The page the label is on

 Appendix A: Creating Flash Applications with SPASM 7

Now, let's say you have a timer function on your third
application page, page 2.

.dw Adjust_Timer
.db 2

So remember, your branch table should include ONLY labels
that are accessed from pages that they are not a part of. If you
have a label on page 0 that only page 0 uses, you don’t need to put
it in the branch table.

Now we have our branch table with all the labels that the
application needs to access from separate pages. But, the
calculator is stupid…it doesn’t know that the data is there! So we
need to tell the calculator where to find this data.

For every label in the branch table, come up with a nickname.
I usually create nicknames by placing “_” before each label in the
branch table. For example, _Adjust_Timer and
_Access_Sprite_Data.

For each label in the branch table (going in the order you
typed the labels in), type in your nickname for that label, then .equ,
then the following formula:

(43 + (1 if the nickname pertains to the first label in the table,
2 if the label pertains to the second label in the branch table, 3 if
the label pertains to the third label in the branch table, etc.)) * 3.

_Access_Sprite_Data .equ 44 * 3

_Adjust_Timer .equ 45 * 3

 Appendix A: Creating Flash Applications with SPASM 8

That’s all there is to it. The calculator now knows on which
pages all the labels are located. However, you cannot use CALL,
JR or JP to access these labels that are on different pages, unless
your application is running the page the label is on. You use
B_CALL nickname to CALL a label on another page, and you use
bjump(nickname) to JP to a label on another page.

Since Access_Sprite_Data is on page 1 of your application,
you use B_CALL _Access_Sprite_Data when you are on page 0.
If you are on page 1, you can use CALL Access_Sprite_Data, and
you don’t need to use the nickname in this case.

Wow, so now you can create single and multiple-page
applications. But remember, applications can only run from ROM.
That means anything that requires RAM in an ASM program
CANNOT be used for an application.

So, you can’t use variables! At least not normally. You
can’t, for instance, say:

Number_Of_Bananas:

 .db 99

 Instead, variables must be stored directly in the calculator’s
RAM, for instance in appbackupscreen. (Refer to lesson ______ if
you need to.)

 Appendix A: Creating Flash Applications with SPASM 9

 And then a biggy…when you use routines to display text,
your text needs to be located in RAM. So you can no longer say
the following:

LD HL, Text

B_CALL _PutS

 You need to copy the string to RAM, and THEN display it.
We will use appbackupscreen to hold the area where we want our
string copied.

TextBuffer .equ appbackupscreen + 100

LD HL, Text

LD DE, TextBuffer

B_CALL _StrCopy

LD HL, TextBuffer

B_CALL _PutS

 So just remember that applications require ROM, and try not
to include code that requires the application to mess around with
itself as if it were in RAM.

