T1-83+ Z80 ASV
for the Absolute
Beginner

LESSON THIRTEEN:

 Index Registers

 Floating-Point Numbers

Lesson Thirteen: Index Registers, Floating-Point Numbers

INDEX REGISTERS

Before | begin this lesson, | want to say that weedrawing to a
close. Soon you will be ready to progress to theaaced world of
ASM, which these lessons are meant to preparegouWwonderful job
for making it this far!

Getting back on track, the Ti-83+ processor provideouple of
two-byte registers for special use. These regsisr called index
registers, and for a reason.

So, what do you think of when you hear the wordi&x?” Do
you think of your index finger? Do you think abalé index at the
back of a school book? Or, how about indexinghaedex cards?

iy 850 the Tmn freeze fis moncy?

coehnt

HE wanied cold hard

Think about it. Let’s say you are studying inamibgy class, and
you need to prepare for a test that quizzes yaeions. You would
probably write some terms on index cards. Thenkemp these index

Lesson Thirteen: Index Registers, Floating-Point Numbers

cards together as a group, and you can accesseyms to prepare for
the test simply by using your index cards.

Now, if you're a smart person, you'd probably kélepm in
alphabetical order. Like so:

Alligator, Bear, Chicken, Dragon, Elephant, Fi€urilla, Hippo,
Iguana, Jackel...

So now, you have all these cards in alphabeticlidro So what
are you going to do if you only need to look up tBa?” Are you
going to flip each card in search of Gorilla? itaaly hope not!
Because now that all the cards are in alphabedickdr, you can find
your card “Gorilla” almost instantly!

Let’s apply this to programming. Suppose that faue some data
that you need to keep organized. Here's a listeaghts, in inches, for
people in a classroom:

Heights:

.db 45, 45, 45, 45, 45, 46, 47, 47, 48, 48, 48, 48, 49, 49, 50, 50, 50, 50, 50, 50, 51, 51, 51, 52,
52, 53, 53, 54, 55, 58, 60

Let’s say that a girl named Suzie is always théhgperson on the
list whenever there is a list of people in the stasem. She is the sixth
person in the attendance list, and she is the petthon on the list of
who’s doing chores. This is because the teackes lio keep her lists
well-organized and easy to work with.

Furthermore, Bob is thé"Qerson in the list, Sarah is number 13,
Chewy is number 18, and Jason is number 23.

n Lesson Thirteen: Index Registers, Floating-Point Numbers

So let’s say that the teacher is using her caloutatfind the
height of these good little students because sigefoheir heights. But
she’s using a Ti-83+ calculator with the Ti-Basecton corrupted, so
she can only access this data by writing and rignamASM program.
(Guys, let’s just pretend, okay?)

What is she going to do? We did something like timce before
when we looked at the characteristics of cars arcks. Our solution
was to LD HL, Label + Offset. For instance, Susgiat Height + 5, and
Chewy is at Height + 17.

However, at that time, we knew exactly wherelad data was,
because the location of the data was marked blyed. |AVhat if the
location of this data of heights cannot be marked kabel? For
example, let’s say that the teacher’s data is dtmr&@de of an
application variable, and this application variaislstored in RAM. As
a programmer in Ti-Basic, | assume that you knoat this application
variable can be in different locations in RAM ayyanoment, depending
on how much data/programs/etc. are added to RANetmted from
RAM.

Thus, the location of the data is not consist&#cause of this, we
can’t say, for instance, LD HL, Height+5 D HL, Height + 11.
(Remember, Height, Height + 5 and Height + 11 ast jepresentations
of specific RAM locations, and just a reminder ttras data in the
application variable is not always in the same RKkhtion) We can
still store the beginning of the data in HL, but gan’t use labels to do
SO0.

Let’s say that the teacher found the location in FHo now she
could use the following code to access the heigh&uzie, Bob, Sarah,
Chewy and Jason.

Lesson Thirteen: Index Registers, Floating-Point Numbers

; HL points to the first person in the list.
; Since Suzie is number six in the list, we add 5 to HL

; to get to the sixth person in the list.
Id a, (hl) ; Register A will contain the value of Suzie’s height.

Id de, 3
add hl, de ; Data location + 8
Id b, (hl)

Id de, 4
add hl, de ; Data location + 12
Id c, (hl)

Id de, 5
add hl, de ; Data location + 17
Id d, (hl)

; BE CAREFUL! Register D contains a value, so we need to save it!

push de

Id de, 5

add hl, de ; Data location + 22
pop de

Id e, (hl)

Well, this works, but it's long and complicatednd\
there’s another thing to consider: What if we ntedccess this data
again very quickly? HL is used quite frequenthaiprogram. Can you

n Lesson Thirteen: Index Registers, Floating-Point Numbers

iImagine how much pushing, popping, and saving afesis required
when we use HL to access heights very, very fretiy®n

Let's use IX to recover values from our data. sTibi
where you’ll see the use of IX and Y. Supposé tRgpoints to the
beginning of wherever the teacher’s data for haightjust like HL did.

Id a, (IX+5) ;Suzie’s height
Id b, (IX+8)

Id c, (IX+12)
Id d, (IX+17)
Id e, (IX+22)

Could it really be this simple? Yes, yes, yeslisTit what
Is so special about IX and Y. You can use itdsily access data found
in lists. You cannot do this with HL, at least tiots way.

But there’s more! (What? There’s more?) IX #victan
do almost anything that HL can do. You can do mwth IX and Y.
You can point to RAM addresses using IX and 1Y.dAyou can push
and pop IX and IY. These registers are perfeaswif HL is tied up
and you need to do some math.

There must be a catch though, right? Right.att,f
there's several catches.

1. First and foremost, IX and 1Y are twice as slowHis and require more
bytes for instructions than HL does. (For instadeD HL, DE
requires only one byte, but ADD IX, DE requires tiges.)

2. IX'and Y cannot exchange their values with DE.

Lesson Thirteen: Index Registers, Floating-Point Numbers

3. With HL, you are able to use H and L as individogles. Youcan do
this with IX and 1Y, but then your prograwill not run on a Ti-Nspire.
(See the Appendixes for more information.)

4. Use of 1Y is not recommended for beginners, anddghessons will not
encourage changing its value. The Ti-83+ usesxt¥éresively, so if you
try to mess with it without knowing how, you camash your calculator.
You will learn later what to do about IY, but dotry to show off by
purposely and needlessly incorporating it into youagram.

5. Finally, when you select aoffset for IX/1Y (such as IX +16, where 16
Is the offse}, your offset can only be a number from -127 to 128.

So, you should stick with HL when your processeeads
beefy, intensive work done. IX (remember, be vegyry cautious with
1Y) should be used for data access / math only wileis tied up or
when you need to access several areas in the gmoe of data. But
just remember, if you frequently need to accesaraa with a whole
bunch of data, IX will save you a lot of time amdgessing power, and
keep you from going insane. As you program mogeraare, you will
understand times when it is important to choosexmégisters over HL.

n Lesson Thirteen: Index Registers, Floating-Point Numbers

FLOATING-POINT NUMBERS

HEY, CHECK 1T OVT: @™ -1 15
19.999099979. THATS WEIRD.

YEAH. THAT'S HOW I
GOT KICKED OUT OF
THE ACM IN COLLEGE.

DURING A COMPETITION, T
TOD THE PROGRAMMERS ON
OUR TEAM THAT o2"-1r

WAS A STANDARD TEST OF FLOATING-
POINT HANDLERS -- IT WOULD

THATS

YEAH, THEY DUG THROUGH
HALF THEIR ALGORITHMS
LOOKING FOR THE BUG
BEFORE THEY FIGURED
IT OUT.

(OME QUT To 20 UNLESS
THEY HAD ROUNDING ERRORS.

|
Since your Ti83+ calculator is capable of doing decir

arithmetic, such as 1.5 + 2.25, it is logical tewase that you can u:

decimal numbers and floati-point numbers in Z8ASM. For the

purpose of these lessons, we are only going to wittkReal Numbers
not Complex Numbers.

P] £ A

As you learned from previous lessons, you use Ragiso do tht
actual computations fan ASN program. Howeveregula registers
only store integex;, and then these integers cannot be bigger thaB&
in value. Thus, we need to Lspecial registerstecated in the
calculator's RAM—towork with floating-point numbersThese
registers are calleOP Registers.

The calculator provides 6 OP registeialled OP1, OP2, OP.
OP4, OP5, and OP6&l'hese are really constants/labels for special ¢
of RAM, so you need to use them as such. Formastayou can sa
“LD HL, OP1,” but you can’t say “LD OP1, 4.352".0%how do we
store a value to an OP regis! First we need to store our float-point
number in our program as a variable. Then we ¢beyhnumbeusing
LDIR, since LDIR is used to copy data from one RAddation to
another RAM location.

‘ Lesson Thirteen: Index Registers, Floating-Point Numbers

Now, since a floating-point number is not an gee we have a
special way to tell the calculator exactly what tluenber is. A floating-
point number on the calculator takes 9 bytes of R#&M can have 14
digits. As you probably know, the calculator odigplays 10 digits, but
you can use the last 4 digits in your number fdraegrecision.

The first byte will be one of four different vakjéut since we are
working with only Real Numbers, we only need beaned with two
of them. This first byte will equal O if the numilde positive, and 128 if
the number is negative.

The second byte in your floating -point numbethis number of
digits and the exponent of your floating-point nmblf this second
byte is equal to 128, your floating point numbes bae digit, followed
by a decimal point and then the rest of your 14tslig If the second
byte equals 129, you have two digits, a decimatfpaind the rest of
your digits. This pattern continues up to a valti@37, giving you a 10
digit floating-point number. As you probably na&twhen performing
calculations on a Ti-83+, this is the biggest nundfaligits you can
display, after which you enter scientific notatitarting at 18 So if
your second byte equals 138 and up, you will hawexg@onent at the
end of your number. (138 = 1, 139 = 10", 145 = 16®, etc.)If your
second byteislessthan 128, your floating point number will have a
negative exponent. For example, 127 will equal. 10

The last 7 bytes of data are the actual digitgoof floating point
number. Be careful here. You store 2 digits pee tior 14 digits. How
do you do that? By hexadecimal! Review the saatio Hexadecimal if
you need to, but recall that a digit of hexadeciaetplals
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E or F. (It's not j@sl like binary or 0-9 as
in decimal.) Now, did you notice that one bytedafa ha digits when
you use hexadecimal? Make a note of that. Severy two digits, use

Lesson Thirteen: Index Registers, Floating-Point Numbers

a hexadecimal number, with 0-9 for each digit. $2#lequal the 2-
digit number 24, and $99 will equal the two-digitnnber 99. Pretty
cool, huh?

So let’s create some floating point numbers! Hgsesome
examples.

Floating_Point_Number:
.db 0, 128, $92, $34, $57, $38, $12, $88, $21
; Equals 9.2345738128821

Floating_Point_ Number_2:

.db 128, 120, $46, $20, $12, $00, $00, $00, $00

‘Equals -4.62012 x 10

Floating_Point_Number_3:

.db 0, 136, $12, $34, $48, $82, $99, $12, $12

;Equals 12344899,1212

Lesson Thirteen: Index Registers, Floating-Point Numbers

Now, although the calculator provides many, manBLL
functions to do math on floating-point numbers,veed our floating-
point number stored in OP1 and, in some cases, WWR2use LDIR for
this.

Rather than go into details, I'll end this lessath an example
program with some B_CALL functions and lots of coamts. We have
a floating-point number, 1.5234523452345. We stdirt by displaying
the floating-point number. Then we will multiplyby 3, and display
the result. Add 1, display the result. Subtraati@play the result.
Finally, divide by 4.23 and display the result.

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

; Our floating point number, 1.5, is stored as a variable two pages below

B_CALL _CIrLCDFull

Id HL, Starting_Number

Id DE, OP1

IdBC, 9 ;A floating-point number is nine bytes long
[dir

SET fracDrawLFont, (IY + fontFlags) ;This allows us to display our floating-point number
;as big text on the home screen. Otherwise,
;the number will display as small text.

Id hl, 0 ;Where we want to display the result on the screen

Id (penCal), hi

Ida, 11 ;Don’t worry about this for now. A should always be this value before

;DispOP1A for the purpose of these lessons, in order to display 10 digits
B_CALL _DispOP1A
B_CALL _getKey

Lesson Thirteen: Index Registers, Floating-Point Numbers

LD HL, Multiply_OP1_By Three

LD DE, OP2

LD BC, 9

LDIR

B_CALL _FPMult
Ida, 11

Id hl, 0

Id (penCal), hi
B_CALL _DispOP1A
B_CALL _getKey

LD HL, Add1

LD DE, OP2

LD BC, 9

LDIR

B_CALL _FPAdd

Id a, 11

Id hl, 0

Id (penCol), hi
B_CALL _DispOP1A
B_CALL _getKey

LD HL, Subtract2
LD DE, OP2

LD BC, 9

LDIR

B_CALL FPSub
Ida, 11

Id hl, 0

Id (penCal), hi
B_CALL _DispOP1A
B_CALL _getKey

;Multiplication requires two numbers, so OP2 holds our second one.

;Multiply 1.5 by 3
;Displays 10 digits

;Where we want to display the result on the screen

;Addition two numbers, so OP2 holds our second one.

;Displays 10 digits
;Where we want to display the result on the screen

;Subtraction requires two numbers, so OP2 holds our second one.

;Displays 10 digits

;Where we want to display the result on the screen

LD HL, Divide_By 4 23

LD DE, OP2

LD BC, 9

LDIR

B_CALL _FPDiv

Id hl, 0

Id (penCal), hi

Ida, 11

B_CALL _DispOP1A
B_CALL _getKey

;Division requires two numbers, so OP2 holds our second one.

;Multiply 1.5 by 3
:Where we want to display the result on the screen

;Displays 10 digits

Lesson Thirteen: Index Registers, Floating-Point Numbers

Starting_Number:
.db 0, 137, $15, $23, $45, $23, $45, $23, $45
Multiply_OP1_By Three:

.db 0, 128, $30, $00, $00, $00, $00, $00, $00

.db 0, 128, $10, $00, $00, $00, $00, $00, $00
Subtract2:

.db 0, 128, $20, $00, $00, $00, $00, $00, $00

Divide_By 4 23:

.db 0, 128, $42, $30, $00, $00, $00, $00, $00

