
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON ONE:

• Introduction to the Method Used in
this Course

• The Calculator’s Version of Russian
or Spanish

2 Lesson One: The Calculator’s Version of Russian or Spanish

INTRODUCTION TO THE METHOD
USED IN THIS COURSE

 I find it necessary to start this course with a short introduction to
myself concerning Z80 ASM. I could program in Ti-Basic, but I found
that none of the games I wanted to program could run fast enough in TI-
Basic. Even Celtic III and Xlib were not much help in creating a speedy
game. Sadly, although there are several very good ASM tutorials on the
internet, I found myself incapable of understanding them for a while, no
matter how much I worked on them. My difficulty was not my
unwillingness to work through them; rather, it was the fact that the
system simply did not work for me. Why? It’s because the lessons
don’t do what they can to explain ASM to the average person. They get
on the technical side, even so far as to introduce college-related concepts
assuming that you know computers inside-out.

 But I am happy to say that once one understands ASM, it can
become an easy language. The trick is, it’s not hard to program in
ASM…the difficulty arises in understanding it. And I have a hunch that
this applies to a lot of people: I feel that if the method for learning ASM
were easy to work with, a lot more people would be programming in
Z80 ASM, and we’d see as many ASM games each month as Ti-Basic
games out there. It is my goal to provide such a simple-to-use method,
to make ASM easy to understand.

Interested? I only recommend knowledge of Ti-Basic, and I’m
assuming that if you want to learn Z80 ASM, you know some Ti-Basic.

 The approach I’m going to take to this language is teach less in
more time. A tutorial like “Learn Z80 ASM in 28 days” attempts to

3 Lesson One: The Calculator’s Version of Russian or Spanish

teach you absolutely everything you should introduce yourself to in a
month. But there’s a lot of unnecessary information in that tutorial.
And once you read a lesson in that tutorial, you have to read it two
times, maybe three times, and still might have difficulty. My goal is to
provide only the most important information, meaning that there will be
very little of the hardware of a calculator. I am making sure you can
understand a lesson in at most two attempts. I will provide diagrams,
numerous examples, and sample problems (which I expect you to do) for
each lesson.

 Know this: You will not leave this course ready to program an
ASM RPG or a side scrolling game. I am not going to try to teach you
everything there is to know about ASM, just enough knowledge so that
you can pick up a tutorial such as “Learn Ti-83+ Z80 ASM in 28 days”
and understand even more about Z80 ASM. I simply want to give you
all the explanation you need to move to advanced topics. And so far, I
have seen that once people finished reading these lessons, they have not
had any difficulties reading more advanced ASM lessons.

 If you’re ready to start, your first lesson begins on the next page.

4 Lesson One: The Calculator’s Version of Russian or Spanish

THE CALCULATOR’S VERSION OF
RUSSIAN OR SPANISH

We’re not going to do any programming today. But did you ever
wonder how to talk to the Ti-83+ calculator? Let’s start this lesson with
a fun exercise. Below is a list of words and their equivalent code. I’ll
give you a bunch of these numbers, and you can translate them into
English.

1 = Throw 11 = Cat 21 = Into The 31 = Tree
2 = Eat 12 = Spaghetti 22 = Outside The 32 = Bar
3 = Walk 13 = Dog 23 = Under The 33 = Bridge
4 = Smash 14 = Computer 24 = Against The 34 = Wall
5 = Move 15 = Lamp 25 = Above The 35 = Skyscraper
6 = Play 16 = Billiards 26 = On The 36 = Water
7 = Cross 17 = Street 27 = In The 37 = Morning
8 = Fight 18 = Sister 28 = For The 38= Front Seat

So, 1 16 27 32 is Throw Billiards In The Bar,

and 2 15 23 31 is Eat Lamp Under The Tree.

Go ahead, try the next few numbers, and then make some up!

1. 7 11 25 36
2. 8 12 26 38
3. 5 13 22 32
4. 6 14 24 34
5. 3 18 27 17
6. 4 11 24 35

5 Lesson One: The Calculator’s Version of Russian or Spanish

Believe it or not, this is exactly how the calculator speaks and is told
what to do: a series of numbers. When you write a Ti-Basic program for
the Ti-83+, the words such as “Line”, “Text” and “For” are translated
into a series of numbers that the calculator reads. Rather than words,
however, the calculator reads these as instructions. For an
unrealistic/hypothetical example,

021 244 231 192 096

might tell the calculator "3 � �". A much longer sequence of numbers,
such as

045 012 195 095 001 084 201 065 196

might tell the calculator to display the character “A” on the home screen.
The idea behind ASM is, like Ti-Basic, using words to represent these
numbers that tell the calculator what to do. However, we’ll worry about
that later.

The calculator does not read numbers quite the same way we do.
Here’s a way to look at it:

6 Lesson One: The Calculator’s Version of Russian or Spanish

In our language, that is a cat. In Spanish, this is a gato. In Russian,
this furry critter is called a koshka. They all mean the same thing, but
different words. So it is with the calculator: when we say 136, the
calculator might say “10001000.” They mean the same number, but
different ways of saying the same number.

To explain the calculator’s different language, let’s take a look at our
numbering system. Start with 0, and count by one number at a time.

 00 01 02 03 04 05 06 07 08 09 10

Notice what happened? After the ones place reached 9, the biggest it
can be, it reset itself to zero, the smallest it could be. The tens place
increased by one. This is something we don’t often think of, but it’s
very important.

10 11 12 13 14 15 16 17 18 19 20

Now, once again, the ones place reset itself to 0, and once again, the tens
place has increased by one.

To save time, let’s continue by counting by 10s.

20 30 40 50 60 70 80 90…96 97 98 99 100

Now what happened? In the number 99, the ones place was at its
maximum, 9, so it reset back to zero. The tens place was supposed to
increase by one, but it also was at 9, the largest it could be. Therefore it
also reset to 0. Because of this, the hundreds place reset itself to one.

Now suppose that we didn’t have 9 as a maximum: what if we had
only 1 as a maximum? That means we don’t have 2, 3, 4, 5, 6, 7, 8 or 9.
We only have 0 and 1. This is exactly the way it is with the calculator.
This is called counting in binary numbers. Let’s start counting in
binary on the next page.

7 Lesson One: The Calculator’s Version of Russian or Spanish

 Once again, start with 0, and let’s count by ones, but in binary.

0 1 10 Since we have a maximum of 1, the number at the
 right resets itself to zero, and the number at the
 left resets itself to one. (We don’t use the words
 ones, tens, hundreds etc. place in binary numbers)

11 100 101 110 111 1000 …

 So why is 1 a maximum? The calculator, which contains a whole
bunch of electronic components, can only tell if an electronic flow is on
or off. If an electronic flow is on, the calculator reads a “1”. If an
electronic flow is off, the calculator reads a “0”. Thus, a calculator
cannot read 2, 3, 4, 5, 6, 7, 8 or 9 in a digit. In other words a calculator
reads a whole bunch of these “ons” and “offs.”

A single one or a zero is called a bit . However, most numbers the
calculator reads—and translates into instructions—are composed of 8
bits or 16 bits. Thus, there are some instructions a calculator receives
given by numbers from 0 to 255, where 11111111 (eight bits at their
maximum, 1) equals 255. Other instructions a calculator receives, with
16 bits, are given by numbers from 0 to 65535. A number of 8 bits is
called a byte, and a number with 16 bits is called a word.

8 Lesson One: The Calculator’s Version of Russian or Spanish

Just remember that Decimal numbers and Binary numbers are different
“languages,” meaning two different ways of representing the same
number.

Our Numbers (Called Decimal) Calculator (Called Binary)
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100

Since the goal of this series of lessons is not to tell you the
unnecessary, I’m going to avoid telling you how to translate back and
forth. However, I almost always use a calculator when I need to
translate from Decimal to Binary and from Binary to Decimal.
Windows provides such a calculator, and you can also find these online.
http://acc6.its.brooklyn.cuny.edu/~gurwitz/core5/nav2tool.html is one
such online site.

9 Lesson One: The Calculator’s Version of Russian or Spanish

When you program in ASM and you need to write numbers instead
of words (such as values for variables), you can always write in Decimal
Numbers, such as 15 and 16, and when you compile this, the numbers
will be translated into binary numbers. However, it is important that you
understand how binary numbers work, because there are times that you
want to use binary numbers directly rather than decimal numbers. For
example, suppose I wanted to put this picture into the calculator:

 When you program in ASM, you have to create this picture as a
series of numbers. Now, there’s two ways of designing this picture as a
series of numbers. One way is to use our numbers:

255 126 60 24 24 60 126 255

 Recalling that a calculator reads numbers, this is EXACTLY the
numbers in our language that tell the calculator what this picture is.
However, what would it look like in binary numbers? Look on the next
page!

10 Lesson One: The Calculator’s Version of Russian or Spanish

11111111 In binary numbers, each

01111110 “1” means a black dot,

00111100 and each “0” means a

00011000 white dot. Now, which

00011000 is easier to understand,

00111100 and which is easier

01111110 to edit?

11111111
I’ll give one more example of the importance of understand binary
numbers. Suppose you wanted to write a Mario game in Ti-Basic.

11 Lesson One: The Calculator’s Version of Russian or Spanish

Let’s say you have a bunch of yes and no values: Is Mario alive? Is he
swimming? Is he flying? Does he have a fire flower? Is he invincible?
Is he at the end of the level? In Ti-Basic, you might use 6 variables: A,
B, C, D, E and F. Then each variable might be equal to 1 if the answer
is yes, or zero if the answer is no. Let’s say Mario is alive, has a fire
flower, and is swimming.

Mario is: 1 = Yes or 0 = No

A = Alive 1

B = Swimming 1

C = Flying 0

D = Has Fire Flower 1

E = Invincible 0

F = At the End of the Level 0

Using six values like this is hard to work with, and uses a lot of RAM.
However, did you notice that there’s only two values for each variable?
Either yes or no. In ASM, you could put these into a single variable:

 1 1 0 1 0 0

Alive, Swimming, Flying, Has Fire Flower, Invincible, End of Level

As a Decimal Number, this is 52. In binary, this is 110100. Which is
easier to visualize?

12 Lesson One: The Calculator’s Version of Russian or Spanish

Now, before you start throwing sticks and stones at me, let me
explain why I wrote a whole section on counting and numbers. You
might say to me, “But Hot Dog, you just told me that ASM uses words
that translate to numbers. Why do we give a hoot about numbers if we
can just type in words?” Because when you write in ASM code, you are
only a hairline away from writing in numbers, aka the language of the
calculator. Counting happens A LOT in ASM. You will understand in
future lessons how much counting actually comes up. Here’s an
example:

In Ti-Basic, you can easily solve the problem 9 * 6. When you put
9 * 6 into a program, or on the home screen, the calculator translates this
problem into numbers—instructions—that it can understand. However,
in ASM, you have to tell the calculator how to solve this problem; it
does not know how to do it! I’m serious, the Ti-83+ calculator does not
know how to do something as simple as 9 * 6, you have to tell it how to
do so. You have to give these instructions to the calculator manually.
There’s several ways to do this, for example, “Solve 9 + 9 + 9 + 9 + 9 +
9.” In other words, you’re counting 9 six times in ASM.

 Next week, we’ll look at how the
calculator is similar to our brain, in
order to make a very important part
of ASM easier to understand.

