
TI-83+ Z80 ASM 
for the Absolute 

Beginner 
 

LESSON FOUR: 

 
 

•  Your First ASM Programs 
 



  Lesson Four: Your First ASM Programs                          2 
  

 

YOUR FIRST ASM PROGRAMS 
 Now that you have a basic understanding on the calculator 
processor, it's time to learn how to code!  This lesson will cover several 
ASM programs, as well as provide exercises for you to practice with. 

However, we're not going to code a “Hello World” program.  To 
proceed in an orderly fashion, I feel that there are other things that 
should be covered first.  After all, ASM instructions are vastly different 
from C++, Basic, and Java instructions. 

 So the question now is, what do you need to write a Ti-83+ ASM 
program?  First, you need a text editor.  I'm not going to list a whole 
bunch of different ones, so just use the one you're comfortable with.  
Then, you need a copy of ti83plus.inc, which I have included with these 
lessons. 

Finally, you need an Assembler.  This is what translates your code 
into the language that your calculator can understand.  I can't list very 
many, because I haven't been programming in ASM for a long time, and 
I've had issues with many assemblers.  Some that I've seen people use 
are Zilog Developer Studio 3.16 and TASM.  The assembler I use, and 
HIGHLY recommend, is Spencer's Assembler, also called spasm.  I 
have included this with the lessons.  It is a Spencer's Assembler is the 
one I will be teaching you how to use, as it's very efficient and runs on 
Mac, Linux and Windows.  I have provided files for Windows and Mac, 
and CLI instructions for Linux. 

You will also need an emulator.  An emulator imitates something 
on a computer, so a Ti-83+ emulator will allow you to run a Ti-83+ on 
your computer.  This way, you can test your programs without putting 
them on your calculator.  You can damage your calculator if you run an 



  Lesson Four: Your First ASM Programs                          3 
  

 

ASM program that has errors on it, so make sure you always test your 
programs on an emulator before putting them on your calculator. 

Which emulator should you use?  WabbitEmu.  Pretty much 
EVERYBODY who programs in Ti-83+ ASM uses WabbitEmu.  I have 
provided applications for Windows and Mac, and CLI instructions for 
Linux. 

You need a ROM to be able to use WabbitEmu.  However, it is 
illegal for me to provide you with a ROM file, so instead, I will tell you 
how to easily create your own.  You can download Ti-83+ Flash 
Debugger, and go to the file ti83plus.clc in the Exe folder.  Change the 
filename to ti83plus.rom, and you have your ROM file! 

Open your text editor, and type in the following program making 
sure that you include the tabs.  TYPE IT.  Don’t just copy and paste.  I 
will then tell you how to compile and run it.  Afterwards, I promise that I 
will explain the program to you one line at a time. 



  Lesson Four: Your First ASM Programs                          4 
  

 

This program will solve the addition problem 1 + 5 and display the 
answer.  Again, please type the program, don’t just copy and paste.  
Also, all indented text should be indented using the tab key.  

 

 

 

 

 

 

 

 

 

 

 

#include “ti83plus.inc” 

.org  40339 

.db    t2ByteTok, tAsmCmp 
 

 B_CALL  _ClrLCDFull 

 ld a, 1 

; Solve the problem 1 + 5  

 add a, 5 

 ld h,0 

 ld l, a 

 

 B_CALL _DispHL 

 B_CALL _getKey 

B_CALL  _ClrLCDFull 

 ret 



  Lesson Four: Your First ASM Programs                          5 
  

 

 

Now save this program as program1.asm, or whatever you want to 
call it.  Give it a name you will remember.  Also make sure that this 
program, spasm and ti83plus.inc are in the same folder. 

  



  Lesson Four: Your First ASM Programs                          6 
  

 

To compile the ASM program using Windows, run command 
prompt and go to the folder containing spasm.  Type in “spasm,” 
followed by a space and the name of your text file.  Type in another 
space.  Then type in the name of your program.  For instance, “spasm 
program1.asm program.8xp”.  Note that your program name will be cut 
down to 8 characters if it is too long. 

The compile instructions are identical for Linux and Macintosh, 
although I have very little knowledge of the CLI and command terminals 
for these two computers. 

 Now, drag your newly created program onto wabbitemu.exe.  If 
wabbitemu asks for a ROM, select the TI83Plus.rom you created.  Also, 
if you are running your program on a Ti-84+ with Operating System 
2.53 or greater, make sure your Ti-84+ is running in Classic Mode.  
Afterwards, run your program on the emulated Ti-83+ using Asm(). 

If you typed everything correctly, you should see the answer to 
your problem, 6.  Two thumbs up!  Now for the detailed explanation I 
promised you. 

 

#include “ti83plus.inc”  – To program for the Ti-83+ in the ASM 
language, most of the functions and data you need is in this file.  
However, these functions are not standard to ASM programming.  They 
are only used when programming ASM for the Ti-83+!  So #include 
tells spasm to include the functions in this file. For example, ti83plus.inc 
tells spasm exactly what to do with _getKey. But if you did not tell 
spasm to include ti83plus.inc, spasm would not know what to do with 
_getKey, and an error would occur.   



  Lesson Four: Your First ASM Programs                          7 
  

 

.org 40339 – Remember what I mentioned in tutorial #3, about how 
RAM has addresses so the calculator knows where to find everything?  
On the Ti-83+, an ASM program must always, always run in RAM 
starting at address 40339.  So .org 40399 tells spasm that this is the 
section in RAM that the program will be located at. 

IMPORTANT: Almost every calculator programmer uses .org $9D93 
instead of .org 40339.  It is vital that you remember that they mean 
exactly the same thing.  You will find out why later, but from this point 
on, except for portions of chapter 5, I will be using .org $9D93.  This is 
so that when you ask other people for help they won’t be puzzled. 

.db t2ByteTok, tAsmCmp – This tells the calculator that the program is 
an ASM program, not a Ti-Basic program.  We’ll talk more about .db 
later. 

B_CALL _ClrLCDFull – Stored on the calculator is a function that 
clears the screen.  You cannot access this function using Ti-Basic.  (Ti-
Basic does something else for the function ClrHome.)  You can only 
access this function using ASM.  B_CALL will call this function and 
clear the screen. 

IMPORTANT: You can also use bcall(_ClrLCDFull).  Some people 
prefer this method.  I will use B_CALL with no parenthesis throughout 
the lessons, but lowercase bcall with parenthesis will also work. 

; Solve the problem 1 + 5 – This is a comment.  You can put anything 
you want in a comment.  It could be information about the program, a 
joke you want the reader to look at, or anything else you want to put in. 

When you run spasm to translate your program, spasm will ignore any 
comments you make.  A comment must start with a semicolon. 



  Lesson Four: Your First ASM Programs                          8 
  

 

ld a, 1 – As a quick review, the calculator’s processor can’t solve a 
problem (such as 1 + 5) using regular RAM, so it needs to solve the 
problem using its “working memory,” its registers. A is one such 
register.  “A” stands for accumulator, and this register is where most of 
the calculator’s math is done.  Ld a, 1 is the same as saying, in Ti-Basic, 
“1 � A,” and so we let a = 1.  But remember, A is not a variable.  It is 
a register, used by the calculator to perform math. 

add a, 5 – This function adds 5 to whatever is inside of register A.  In 
this case, since A = 1, “add a, 5” will cause A to equal 6.   

ld h, 0 – H is another register.  Later we’ll talk about what H is mainly 
used for (because each of the calculator’s registers has a special 
purpose), but for right now we let it equal 0. 

ld l, a – L is yet another register.  We let L = A.  So now L = 6, since A 
= 1 + 5 = 6. 

By the way, H and L can be used as a pair.  Since H = 0 and L = 6, HL = 
06, meaning HL = 6.  For the time being, don’t take this and run with it: 
if H = 1 and L = 7, HL DOES NOT equal 17.  (It equals 263, and you 
will find out later why) 

B_CALL _DispHL – Stored on the calculator is a function called 
DispHL, which will display whatever is inside of HL.  Once again, only 
ASM programs can access this.  Since HL = 6 after our addition 
problem, B_CALL _DispHL will display “6” on the screen. 

B_CALL _getKey – Waits for a keypress. 

ret – The ASM program will quit upon reaching ret.  All ASM programs 
need to end with “ret”, or else the calculator will crash. 

Here’s another program.  This time, you should see the answer 11. 



  Lesson Four: Your First ASM Programs                          9 
  

 

 

 

 

 

 

 

 

 

 

 

Exercise: 

Edit your program three times so that you can solve 55 + 67, 102 + 58, 
and 200 + 15. 

 

Let’s go back to the program that solved 7 + 4.  Change it to the 
following: 

#include “ti83plus.inc” 

.org  $9D93 ; Remember, this is so you can get help without 

  ; confusing people 

.db    t2ByteTok, tAsmCmp 
 

B_CALL  _ClrLCDFull 

 ld a, 7 

; Solve the problem 7 + 4  

 add a, 4 

 ld h,0 

 ld l, a 

 B_CALL _DispHL 

 B_CALL _getKey 

B_CALL  _ClrLCDFull 

 ret 



  Lesson Four: Your First ASM Programs                          10 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 What happens now?  You still get the answer 11.  When spasm 
translates the program, it replaces “NumberSeven” with the number 7, 
and it replaces “NumberFour” with the number 4.   

 In the case of this program, NumberSeven and NumberFour are 
called constants.  A constant is a number that never changes.  Since 
NumberSeven is always equal to seven, you can use it instead of the 
number 7 anywhere in this program.  Try it: 

#include “ti83plus.inc” 

.org  $9D93 

.db    t2ByteTok, tAsmCmp 
 

NumberSeven .equ 7 

NumberFour .equ 4 

B_CALL  _ClrLCDFull 

 ld a, NumberSeven 

 

; Solve the problem 7 + 4  

 

 add a, NumberFour 

 ld h,0 

 ld l, a 

 

 B_CALL _DispHL 

 B_CALL _getKey 

B_CALL  _ClrLCDFull 

 ret 



  Lesson Four: Your First ASM Programs                          11 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You should get the answer 14. 

This wraps up our programming for today.  Here are a couple of 
things for you to look at and think about. 

 

1.  Be careful when working with register A.  A is one byte, so it 
cannot be bigger than 255.  In fact, try adding 200 + 100.  Do you 
get 300?  No, you get 44.  Here’s what happens:  200 + 55 is 255.  
So you have 45 left to add to A.  If you add one more to A, A 

#include “ti83plus.inc” 

.org  $9D93 

.db    t2ByteTok, tAsmCmp 
 

NumberSeven .equ 7 

NumberFour .equ 4 

B_CALL  _ClrLCDFull 

 ld a, NumberSeven 

 

; Solve the problem 7 + 7  

 

 add a, NumberSeven 

 ld h,0 

 ld l, a 

 

 B_CALL _DispHL 

 B_CALL _getKey 

B_CALL  _ClrLCDFull 

 ret 



  Lesson Four: Your First ASM Programs                          12 
  

 

cannot get any bigger, so it resets to zero.  Then you have 44 left to 
add to A, so A = 44. 

2. To subtract a number from A rather than add a number to A, use 
the instruction sub.  For instance,  

ld a, 5 

sub 2 

This will solve the problem 5 – 2, returning the answer 3. 

However, note that A cannot be less than zero.  Just like A resets 
itself to 0 when you try to make it bigger than 255, A resets itself 
to 255 when you try to make it less than zero. 

 

 Next lesson, we’ll look at variables and labels. 


