
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON EIGHT:

• Math Applied to Constants

• The Special Purpose of HL

• Displaying Text

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 2

MATH APPLIED TO CONSTANTS
 If you remember, .db is used to enter raw data into the calculator,
data which you access by the ram addresses in which the data is
contained.

 Let’s say, hypothetically, that you want to program a four-color
grayscale game with black, white, light grey and dark grey. This
game—we can pretend, can’t we—will be a four-player, split-screen
multiplayer game, that allows each player to build a car. There are five
values of data in particular: Color of car, color of wheels, type of car,
size of car, and speed of car. (Don’t compile this)

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

Truck .equ 0 ; A whole bunch of constants

Car .equ 1

Motorcycle .equ 2

Slow_Speed .equ 0

Medium_Speed .equ 1

Fast_Speed .equ 2

Small_Size .equ 0

Medium_Size .equ 1

Big_Size .equ 2

White .equ 0

Light_Grey .equ 1

Dark_Grey .equ 2

Black .equ 3

; Continued on next page

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 3

So then, you remember how to access data in a variable, right? For
example, ld a, (Player1). However, register A will only contain the
color White, meaning the number zero! Want to know why?

ASM RAM
ADDRESS ON
CALCULATOR

TRANSLATION,
IN DECIMAL
NUMBERS

#include “ti83plus.inc”

.org 40339

ld a, (Player1) 40339 58, 40342

Player1:

.db White, 40342 0,

Light_Grey, 40343 1,

Truck, Small_Size, Slow_Speed 40344 0, 0, 0

Player1:

 .db White, Light_Grey, Truck, Small_Size, Slow_Speed

Player2:

 .db Black, Dark_Grey, Car, Medium_Size, Fast_Speed

Player3:

 .db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:

 .db Black, White, Motorcycle, Small_Size, Medium_Speed

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 4

 As you can see, register A accesses only what is inside RAM
address 40342, and nothing after it! That is, Player1 pertains to RAM
address 40342, which holds the first value of data, and that is all that is
stored inside register A. Register A does not retrieve values for any
addresses before and after 40342, in this case. So what if you want to get
the other four values and store them in registers B, C, D and E? These
four values are stored in addresses 40343, 40344, 30345 and 30346, so
how do you get them? You could create a label for each value and
therefore turn each value into a variable, but that can get quite tedious
and messy.

 However, if you think of the label as just a constant, you can do
some math with the constant. In this case, Player1 is equal to 40342,
which means that SPASM puts in the number 40342 whenever it comes
across Player1. So what if you do a little math, and add 1 to the
constant? For instance, Player1 + 1? Then SPASM will put in 40343,
which is 40342 + 1!

 So, you can access the first value in Player1 by ld a, (Player1), the
second value using ld a, (Player1 + 1), the third value by using ld a,
(Player1 + 2), etc.

 You can also apply a minus sign to a constant. And even
multiplication and division! (Be careful with division. The calculator is
very picky when it comes to decimal numbers, and you will usually only
get integers.) For instance, Player1 – 5 and Player1 * 15, and Player1 /
15.

So why can you do this and not use multiplication, addition or
subtraction directly on registers? Why can’t you say “ld a, e + 5?” This
is because the processor, directly, can’t handle this. Whenever there is a
value that has to change, the processor can only do so much to change it.

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 5

But the value for constants is set, and remember that constants are
handled by SPASM, not by the calculator. When you apply addition,
subtraction, and multiplication to a constant before compiling it, the
value is fixed, it will never change…a constant multiplied by a constant
is still a constant. In other words, if you tell your program to ld a,
(Player1 + 7), the program doesn’t translate into “find out what Player1
+ 7 is equal to, and then put into register A whatever is inside of Player1
+ 7.” Instead, the program translates into “put into register A whatever
is inside of RAM at address 40350.”

For this reason, you can use addition, subtraction, multiplication
and limited division on constants. For instance, ld a, 3+ 3 will translate
into ld a, 6. Similarily, ld a, 4 * 23 wil translate into ld a , 92. Finally,
ld a, NumberSeven + NumberFour is the same as ld a, 11.

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 6

THE SPECIAL PURPOSE OF HL
 Now that you understand how you can access subsequent areas of
ram, let’s look at an example of how to do this. We will use our
previous data, and store the color of the car in register b, the color of the
wheels in register c, the type of car in register d, and the size of the car
in register e. Register A will contain the speed of the car. The values
we load will depend on the player.

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

; in register A to decide what data to load.

 cp 1

 jr z, Load_Player1_Data

 cp 2

 jr z, Load_Player2_Data

 cp 3

 jr z, Load_Player3_Data

 cp 4

 jr z, Load_Player4_Data

Load_Player1_Data:

 ld a, (Player1)

 ld b, a

ld a, (Player1+1)

 ld c, a

ld a, (Player1+2)

 ld d, a

ld a, (Player1+3)

 ld e, a

ld a, (Player1+4)

ret

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 7

Load_Player2_Data:

 ld a, (Player2)

 ld b, a

ld a, (Player2+1)

 ld c, a

ld a, (Player2+2)

 ld d, a

ld a, (Player2+3)

 ld e, a

ld a, (Player2+4)

ret

Load_Player3_Data:

 ld a, (Player3)

 ld b, a

ld a, (Player3+1)

 ld c, a

ld a, (Player3+2)

 ld d, a

ld a, (Player3+3)

 ld e, a

ld a, (Player3+4)

ret

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 8

 Okay, so this works, but you notice how much space this takes?
You also notice that if you were to write a similar program in Ti-Basic,
you wouldn’t have to make a 4x copy of your simple code. The problem
is, you have to pick a different constant, a different ram address, each
time. This is because of the function ld a, (Value), which calls for a
strict value, a strict ram address. What we need is to load register A
with an address that can change.

Load_Player4_Data:

 ld a, (Player4)

 ld b, a

ld a, (Player4+1)

 ld c, a

ld a, (Player4+2)

 ld d, a

ld a, (Player4+3)

 ld e, a

ld a, (Player4+4)

ret

Player1:

 .db White, Light_Grey, Truck, Small_Size, Slow_Speed

Player2:

 .db Black, Dark_Grey, Car, Medium_Size, Fast_Speed

Player3:

 .db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:

 .db Black, White, Motorcycle, Small_Size, Medium_Speed

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 9

 In a perfect world, we could load a ram address into a register
depending on what player we want to load. In a perfect world, we could
use this value to access the car color for the player, and then increase the
value in the register to access the next value of data (in RAM) for the
car, aka the color of the wheels. On the next page is our perfect world
program, using the register H to hold the ram address.

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 10

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

; in register A to decide what data to load.

 cp 1

 jr z, Load_Player1_Data

 cp 2

 jr z, Load_Player2_Data

 cp 3

 jr z, Load_Player3_Data

 cp 4

 jr z, Load_Player4_Data

Load_Player1_Data:

 ld h, Player1

 call Load_Player_Data

 ret

Load_Player2_Data:

 ld h, Player2

 call Load_Player_Data

 ret

Load_Player3_Data:

 ld h, Player3

 call Load_Player_Data

 ret

Load_Player4_Data:

 ld h, Player4

 call Load_Player_Data

 ret

; Continued on next page

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 11

Load_Player_Data:

 ld a, (h) ; In a perfect world, h contains the ram address to load from

 ld b, a

 inc h

ld a, (h)

 ld c, a

 inc h

ld a, (h)

 ld d, a

inc h

ld a, (h)

 ld e, a

inc h

ld a, (h)

ret

Player1:

 .db White, Light_Grey, Truck, Small_Size, Slow_Speed

Player2:

 .db Black, Dark_Grey, Car, Medium_Size, Fast_Speed

Player3:

 .db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:

 .db Black, White, Motorcycle, Small_Size, Medium_Speed

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 12

But let’s face the facts: it’s not a perfect world. Remember that H
cannot be bigger than 255? Most RAM addresses are much bigger than
255!

 Oh, but this was so much smaller (and would be faster) than using
constants! Oh, if only we could do something like this in a Z80 ASM
program.

 Oh, but we can! It’s just we can’t use a one-byte register, as it
only goes up to 255. H and L are both one-byte registers. But, what
happens when you put one byte and one byte together? You get TWO
bytes! Simple math! ☺ Oh, and 2 bytes can go up to 65535, which, as
you can tell, is high enough to store RAM addresses!

 So you use HL (H and L put together) to store RAM addresses.
Then, as you might expect, you use (HL) to access whatever is inside of
the RAM pointed to by HL. Use ld hl, 2-byte value to store a value into
hl, such as LD HL, 12482.

 By the way, if you use a fixed number/constant to store a RAM
address and retrieve whatever is inside of it, you can only use register A
to do so. BUT when you use HL, you can immediately store it to any
one-byte register! Whenever you see a function, such as ld, that has a
parameter of a one-byte register, you can also use (HL) inside that
parameter.

For example, instead of

ld a, (Player1)

ld e, a

You can use

ld hl, Player1

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 13

ld e, (hl).

This will give us VAST improvements to our data-accessing program.
You can use INC and DEC functions on HL by the way.

; Register A will contain the player, whether 1, 2, 3 or 4. We use the value

; in register A to decide what data to load.

 cp 1

 call z, Load_Player1_Data

 cp 2

 call z, Load_Player2_Data

 cp 3

 call z, Load_Player3_Data

 cp 4

 call z, Load_Player4_Data

call Load_Data_Into_Registers

Load_Player1_Data:

 ld hl, Player1

 ret

Load_Player2_Data:

 ld hl, Player2

 ret

Load_Player3_Data:

 ld hl, Player3

 ret

Load_Player4_Data:

 ld hl, Player4

 ret

; Continued on next page

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 14

You can also use (hl) to store values into variables.

For example, instead of

ld a,1

ld (Player1), a

You can use

ld hl, Player 1

ld (hl), 1

Load_Player_Data:

 ld b, (hl)

 inc hl

ld c, (hl)

 inc hl

ld d, (hl)

 inc hl

ld e, (hl)

 inc hl

ld a, (hl)

ret

Player1:

 .db White, Light_Grey, Truck, Small_Size, Slow_Speed

Player2:

 .db Black, Dark_Grey, Car, Medium_Size, Fast_Speed

Player3:

 .db Light_Grey, Dark_Grey, Motorcycle, Large_Size, Slow_Speed

Player4:

 .db Black, White, Motorcycle, Small_Size, Medium_Speed

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 15

DISPLAYING TEXT
 Now that you understand on how HL is used to store changing,
non-constant RAM addresses for data access, we can start playing with
functions that require HL as a parameter. After reading the title, you
might wonder, “why do we need HL to display text?” Because text is
stored as pure, unaltered data with .db, meaning you need a label! And
since labels pertain to RAM addresses, HL is used to access this label.

 Since .db is used to enter raw data, you can use it to store strings.
However, there is a catch, nothing that you need to be concerned about,
and actually something that gives you an advantage.

 Remember that a translated ASM program, in the end, consists of a
whole bunch of numbers. When your calculator stores a string, it’s
stored as a bunch of numbers. When your calculator needs to display
the string, these numbers are, when the program is running, translated
into their respective characters so you see them on the screen as letters.

 For example, the letter “A” is the number 65, and the letter “C” is
the number 67. So if you need your calculator to display “ACA,” your
program should contain the numbers 65 67 65, in other words .db 65, 67,
65. When ordered to display this data as a string, your calculator will
read these numbers and translate them onto the screen as ACA.

 The advantage is that you can display characters you normally
couldn’t display in Ti-Basic! For instance, what if you wanted to
display the “blinking block” you see on the text screen all the time?

The number for this character is 224. So by putting .db 224 in
your program and telling your calculator to display it as a string,
the calculator will see the number 224 and display this block
character.

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 16

 However, let’s face it, .db Number, Number, Number for a bunch
of letters can be tedious. Looking up the numerical translations for a
bunch of characters is very time-consuming. Thus, you can enter strings
directly as well with .db.

For example,

Text:

 .db “Hello World”, “This is my string”, 224, 65, 67, 67, 65, etc.

 Of course, you can combine string data and numbers, such as with
the above example.

 It’s just important to understand that the string is stored as
numbers, just in case you want to use letters and symbols that your
computer doesn’t supply, such as the arrows you see in the calculator for
scrolling menus.

 The built-in function PutS will take the numerical data, and
translate them into letters that are placed on the screen as text you can
see.

B_CALL _PutS

Displays a string specified by the label stored in HL. The string

must end in a zero, or an error occurs. The zero tells the

calculator where the string ends.

 Examples: LD HL, String

 B_CALL _PutS

String:

 .db “Hello World”, 0

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 17

As a reminder, I don’t recommend you copy this program directly, in
case “copy-and-paste” bugs occur. You should retype it yourself.

Wouldn’t it be if we could put the string anywhere we want?

If you read chapter three, you remember that the calculator has
special areas of RAM reserved for its uses, each with its own addresses.
For displaying text on the main screen, the calculator keeps track of the
location of the cursor using curCol and curRow—variables if you will.
curCol is a constant, and so is curRow. curRow is a constant for RAM
address 33867. The RAM at 33867 is used for storing what row—the
first row, row 0; the second row, row 1; the third row, row 2; etc.—the
cursor is on the home screen. curCol is right after curRow in terms of
location/address, and is used to store what column—0 to 15—the cursor
is located. By manually specifying a row and a column, we can tell the
calculator where we want our text. Add the lines in blue on the next
page.

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

HelloWorldString:

 .db “Hello World”, 0

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 18

Remember, the first row is row 0, and the first column is column 0.

Some exercises are on the next page. Next lesson we’ll learn about
other two byte registers, by putting D and E together, and by putting B
and C together.

#include “ti83plus.inc”

.org 40339

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 3
ld (curRow), a
ld a, 2
ld (curCol), a

ld hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

HelloWorldString:

 .db “Hello World”, 0

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 19

Exercises: Write programs to display strings at the specified positions
on the screen.

1. The string “Get a grip” at anywhere in particular

2. The string “This is fun!!” on the first row, the first column

3. The string “Ti-83+ Z80 ASM” in the second column and the 4th
row

4. The string “A” in the 16th column, the 6th row

5. The string “Hello World” preceded by an up arrow and proceeded
by a down arrow. The numerical value for an up arrow is 30, and
the numerical value for a down arrow is 31. Display it in the 3rd
Column and the 4th row.

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 20

ANSWERS:

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 0
ld (curRow), a
ld a, 0
ld (curCol), a

ld hl, String
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

String:

 .db “This is fun!!”, 0

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld hl, String
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

String:

 .db “Get a grip”, 0

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 21

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 3
ld (curRow), a
ld a, 1
ld (curCol), a

ld hl, String
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

String:

 .db “Ti-83+ Z80 ASM”, 0

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 5
ld (curRow), a
ld a, 15
ld (curCol), a

ld hl, String
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

String:

 .db “A”, 0

 Lesson Eight: Math Applied to Constants, The Special Purpose of HL; Displaying Text 22

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

B_CALL _ClrLCDFull

ld a, 3
ld (curRow), a
ld a, 2
ld (curCol), a

ld hl, HelloWorldString
B_CALL _PutS
B_CALL _getKey
B_CALL _ClrLCDFull
ret

HelloWorldString:

 .db 30, “Hello World”, 31, 0

