I

T1-83+ Z80 ASV
for the Absolute
Beginner

LESSON TWELVE:

e Soring and Retrieving Values Larger
Than One Byte

Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

STORING AND RETRIEVING VALUES
LARGER THAN ONE BYTE

As a review from Lesson 5, you can stores valoestiables by
using register A. You can also retrieve valuesifthose variables by
using register A.

Have you ever played Donkey Kong Country? (Asgetivank you
for the time | spent putting these lessons togethelove to see
someone make Donkey Kong Country for a Ti-83+ e84+)

Donkey Kong can collect up to 100 bananas, anal hieegains an
extra life. Then the number of bananas is rese¢éto. Thus, the

Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

number of bananas can never exceed 255. So ifswecided to
make a Donkey Kong Country game for a Z80 procesegrister A
would be perfect for this.

; Donkey Kong has collected 5 bananas

Ild a, (Number_Of Bananas)
add a, 5

ld (Number_Of Bananas), a

For a game that requires a high score, howeverpgte of
numbers is not going to be enough...255 is way toomuad a limit for
high scores. And what about when your calcula&s fumbers such as
256, 341? That's WAY bigger than 255.

YET, the Z80 processor can do such things. In otleeds, since
one-byte values aren’t enough for everything,dlibw you throughout
the lessons how to handle the bigger numbers. Mermygou need to be
aware that the bigger the number is, the hardsit@t work with said
number. Even storing and retrieving values for-twte numbers (0 —
65535) requires a little bit of work. This lessare will focus on
variables holding 2-byte values.

You can only use Register A directly to store egtdeve values
that are one byte in size. However, you can uselH, and BC to
store and retrieve values TWO bytes in size.

n Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

For this example program, | will be using hexadedinumbers.
(Remember that hexadecimal numbers are just nurdeiferent
“language” of numbers.) | am doing this becausemwwou put two
hexadecimal numbers together (such as 2 regisyens)get the same
number. If register H = $EF and register L = $#3B,= $EF23. (Recall
Lesson 12.) However, with decimal numbers, thisosthe case. If H
=10 and L = 234, HL does not necessarily equaB40Zor this lesson,
it isimportant to visualize HL asH and L put together.

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

Id de, $FC23 ; $FC23 in hexadecimal is equal to the number 64547
Id (Score), de

Id hl, (Score)

B_CALL _DispHL
B_CALL _getKey

Score:

.dw 0 ; Since we are storing and retrieving the value of a 2-Byte number, we use dw instead of db.

Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

What happens is instead of using one register@Ajdre a one-
byte value, two bytes (H and L, D and E, etc) aeduo store two one-
byte values. Just remember that a two-byte variedfuires—of
course—two bytes of RAM.

So, are you ready to call me a liar? Seems top éas? It does.
Well, before you toss out the lesson and decidel tthan’t know my
right hand from my left hand, try the next exammptegram.

#include “ti83plus.inc”

.org $9D93
.db t2ByteTok, tAsmCmp

Id hl, (Score)

B_CALL _DispHL
B_CALL _getKey

ret

What? When _DispHL is called, do you see the vaia17? No,
you should see 9212.

| suspect that the Ti-83+ processor was designefipoih Fool's
Day, because the designers most likely decidedaipabig joke on
developers.

n Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

Here's the deal: LD HL, (Score) is the same amsgihe
following:

LD L, (Score)
LD H, (Score +1)
REMEMBER, THE HEXADECIMAL

NUMBER $FC23 EQUALS THE
NUMBER 64547.

RAM
ADDRESS:

SCORE SCORE +1

LD HL, (Score)

H L
I

Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

Why is it not the other way around? Why not Htfiend then L?
That's the joke. The people who made the processoe trying to be
funny. (Okay, so | don’t know the real reason.t Btime have some
fun ©)

This happens also with Id DE, (Two-Byte Variablajyldd BC,
(Two-Byte Variable). E is retrieved before D iadaC is retrieve before
B is.

Why, then, did we not have any issues in the éxstmple
program? Because the registers are also switciieddyTwo-Byte
Variable), HL/DE/BC. Id (score), HL is the samesaying

Id (score), L
ld (score +1), H

As you will see in the diagram on the next padkisirating the
first example program), this “reversing of valuesturs twice. So
when you reverse the position of two values, aed tieverse them
again, you get back where you started.

n Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

REMEMBER. THE HEXADECIMAL

REMEMBER, THE HEXADECIMAL
NUMBER $FC23 EQUALS THE
NUMBER 64547.

D E

LD (Score), DE

RAM
ADDRESS:

SCORE SCORE +1

LD HL,(Score)

H L

L 1

‘ Lesson Twelve: Storing and Retrieving Values Larger Than One Byte

This “reversing of values” that occurs with 2-bytiables and
registers is known d#tle-endian. I'm telling you this so that when
you ask for help and people bring up this term, kwow what they’re
talking about. The important thing is, remembat ihyou
store/retrieve values of 2-byte variables using-byte registers, L will
get stored/retrieved first, than H. E comes belareC comes before B.

By the way, with SPASM, (be careful, this technigsiéor
SPASM) you can replace the two .db statements eiitier .dw $FE23
or .dw 64547. Why did | not do this in the firsape? Because |
wanted you to be aware of the little-endian probleBPASM takes the
.dw statement and places the numbers in the riggitipns so as to help
avoid the little-endian problem. But NOT ALL COMHERS DO
THIS. Be very careful when working with .dw, andke sure you
know how your compiler handles little-endians.

