T1-83+ Z80 ASM
for the Absolute
Beginner

LESSON TEN:

» Working with Key Presses
e Saving Register Values

Lesson Ten: Working with Key Presses, Saving Register Values

WORKING WITH KEY PRESSES

Alaska Robotics KeyLoarJ Twister

It wasn't too |an9 ago that

a c:ornpu‘l'er Iike H\is Inp‘l‘np \.-Jqu.lcl
l\ave 'Fl"ed an entire room.

There was a time when computer programs could myhard-
coded numbers and instructions. You could nottinplues, and you
could not change what a program could do with kegges. Nowadays,

Lesson Ten: Working with Key Presses, Saving Register Values

writing a calculator program without user key pesswill easily put it at
the bottom of the list at ticalc.org.

There are three methods that will allow you to diekey presses in
an ASM program. One method, which you have beemguss _getKey,
will wait for a keypress. The second method willyowait for a
minuscule fraction of a second for a keypress,taad the program will
keep running.

These two methods, however, are not flexible. tlefsll, it is
difficult, if not impossible, to use these methddsllow continuous key
detection. What happens when you press the dowr-kad hold it—
in the catalog on the calculator? Assuming younaterunning
Omnicalc or a similar program, there is a briefgmbefore the menu
keeps scrolling. This is definitely an annoyarfogu are writing a
game, such as a Mario game, where you need acdtidregopen
constantly as the respective key is held.

Secondly, you can’t detect multiply keys at oncemgishese two
methods. If you want to use the keys to move jp ahd the second key
to fire, you wouldn’t be able fire and move at Hame time.

The third method takes care of both these probldRead
Appendix C to learn about this. It requires anaatbed knowledge of
ASM to understand, so it will not be covered in ldgson itself. Rest
assured, at the end of all the lessons, you wilehibe capability of
understanding Appendix C.

Going back to _getKey, we know it waits for a keggs.
However, it will also tell you what key was pressey storing it into
register A. Key presses, like most everything,edse numbers. During
_getKey, if you press the Up key, represented asitimber 3, register
A will hold the number 3.

n Lesson Ten: Working with Key Presses, Saving Register Values

But like everything else, we can use constantsakewalues
easier to remember. In this case, kUp is a conftathe number three.

Key codes for _getKey are represented as hexadegsunaers.
At the end of this lesson, you will find a tablentaining all the values
for key presses, in hexadecimal. The dollar sigimant of the number
means that the number is hexadecimal. When yowstiag a program
requiring hexadecimal numbers, you always putmafgont of a number
that you want to be hexadecimal.

On the next page is a program that will demonsttagause of
_getKey to either increase register B or decreagister B. In other
words, we won't simply use _getKey just to wait fokey press.

Lesson Ten: Working with Key Presses, Saving Register Values

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull
Id b, 127
jr Display ; Display initial value of B.
KeyLoop:
B_CALL _getKey
cp kUp ; If the up arrow key was pressed.
jr Z, Increase
cp kDown ; If the down arrow key was pressed.
jr Z, Decrease
cp kClear ;Ifthe CLEAR key was pressed, quit the program
ret Z
jr KeyLoop ; If any other key was pressed, redo _GetKey.
Increase:
Ida, b
cp 255 ;Don'tincrement B if it's at its maximum value. That way it doesn’t reset to 0
jr Z, KeyLoop
incb
jr Display ; Display new value of B.
Decrease:
Ida, b
cp O ; Don't decrement B if it's at its minimum value, so it doesn’t reset to 255.

jr Z, KeyLoop

dec b ;Since the next part of code run is display, we don’t need to jr there.

Display:
Ida, 0 ; Reset cursor to top of screen.
Id (curRow), a
Id a,0
Id (curCol),a
Id h,0
dl, b
b_call _DispHL
jr KeyLoop ; Get another key.

— Lesson Ten: Working with Key Presses, Saving Register Values

The advantage to _getKey is that you can usedéetect when a
key was pressed in conjunction with 8r Alpha. For instance, you can
tell the calculator what to do when Alpha-1 is pegs when %-Math is
pressed, etc. The only issue is that you canndt with 2"°-Up, Alpha-
Up, Alpha-Down and %-Down with _getKey.

Replace cp kUp with cp kCapA, and replace cp kDawth cp
kCapB. See what happens when you run the proghomn.can’t
change the value of register B with the reguladawh keys, but you
can change the value either by pressing Alpha-Matkipha-APPS.

However, _getkey CANNOT be used to work with th&kzy by
itself. You cannot use it to work with the Alphaykby itself either.
The 2% and Alpha keys must be used in conjuction witreokeys.

While _getKey waits for the user to press a keyet@sC does
not. The user gets one shot at pressing a ke, \aftich the program
will continue. The advantage to _GetCSC is thatogram can
constantly be running without having to wait fokeypress. If the user
does press a key, register A will contain the keasped. If register A is
equal to zero, no key was pressed.

There are some other differences between _GetC8CgatKey.
First of all, _GetCSC cannot directly acce¥5Key and Alpha-Key
functions, though it does allow you to us8 @nd Alpha keys by
themselves. Also, GetCSC uses different constanepresent key
values. kUp and kDown will not work efficiently thi_ GetCSC.

The next page contains a program similar to theipus one. |t
uses _getCSC, meaning we have to make adjustmpoés SGetCSC
waits only a fraction of a second for a keypressl, ases different
constants. Pay special attention to the linedus.b

Lesson Ten: Working with Key Presses, Saving Register Values

#include “ti83plus.inc”
.org $9D93
.db t2ByteTok, tAsmCmp

B_CALL _CIrLCDFull
Id b, 127
jr Display ; Display initial value of B.

B_CALL GetCSC

cp skUp ; If the up arrow key was pressed.

jr Z, Increase

cp skDown ; If the down arrow key was pressed.

jr Z, Decrease

cp skClear ;Ifthe CLEAR key was pressed, quit the program
ret Z

jr KeyLoop ; If any other key was pressed, or if no key was pressed, redo _GetCSC.

Increase:
Ida, b
cp 255 ; Don'tincrement B if it's at its maximum value. That way it doesn’t reset to O
ir Z, KeyLoop
inc b
jr Display ; Display new value of B.
Decrease:
Ida, b
cp O ; Don't decrement B if it's at its minimum value, so it doesn’t reset to 255.
jr Z, KeyLoop

dec b ;Since the next part of code run is display, we don’t need to jr there.

Ida, 0 ; Reset cursor to top of screen.
Id (curRow), a

Id a,0

Id (curCol),a

Id h,0

dl, b

b_call _DispHL

jr KeyLoop ; Get another key.

n Lesson Ten: Working with Key Presses, Saving Register Values

SAVING REGISTER VALUES

So far, we've learned about saving registers bgma@f saving the
needed values to other registers.

& 1999 Randy Glasbergen. www.glasbergen.com

"It's the latest innovation in office safety.
When your computer crashes, an air bag is activated
so you won't bang your head in frustration."

However, as you might expect, this can be a prolether
registers you can save to are tied up with valeesneed. Furthermore,
did you see any instructions that allow you to,dgample, “LD HL,
DE?” Nope, they don’t exist. So while you caneséive value of two
byte registers by, say, ‘LD H, D LDL, E”, thean be an
inconvenient, and in some cases, impossible. dltldvhave been
awesome if Zilog could have made 150 registeroheesthe problem of
saving regqisters like this, but that would haverbepensive at the time
the processor was invented.)

n Lesson Ten: Working with Key Presses, Saving Register Values

What about saving the values of registers to RANt#t a bad
idea, but then register A would have to be freg@mocould store the
value of the register in A and save it to RAM. §hmethod is also not
very optimized, and in a processor-intensive gawery second counts.

Did I just say register A would have to be fre@/zll, I'm
mistaken, but nobody’s perfect. You can save #iees of registers to
RAM in one simple instruction, PUSH. Then you tetdy POP.

Think of this process as a PEZ dispenser. I'migpgou know
what PEZ in. It's a very tasty, but tiny, squaamdy that will have little
ones eating out of your hand in mere moments. Whatre fun is the
way you get that candy. You have a PEZ dispengbrsesmeone’s
head at the top—Charlie Brown, Pluto the Dog, Chiokris, etc. To
get candy out of the dispenser, you move the haall, land out comes
the candy! The greatest thing since sliced bread.

RUSHING TO THE BATMAN ARRIVES,
SCENE OF THE BUT HE G60OES OVER
CRIME, SPIDER-MAN THE EDGE TOO!
LOSES HIS FOOTING
AND FALLS OFF THE
EDGE OF A CLIFF!

PAPA SMURF I THOUGHT I TOLD YOU
HURRIES TO TO STAY AWAY FROM
HELP, BUT HE-- MY PEZ COLLECTIONI

Lesson Ten: Working with Key Presses, Saving Register Values

Now, does that candy come magically? Of courdeaven
though as a three-year-old you might have thouwtt tYou have to put
candy inside of the dispenser to fill it, and tlyexs take candy out to eat

It.
You refill the PEZ dispenser by pushing To get a piece of candy from your PEZ
candy in. To stick a piece of candy in, it dispenser to eat it. you "pop" a piece of
must be "pushed" on top of the other candy from the dispenser. By pushing the
pieces of candy. head of the dispenser back, a piece of candy
"pops" out

The reason you have to push the candy is
because all the candy you stored in the
dispenser stays toward the top. It won't
go down unless you force it down, that
is, unless you push it down.

| think you can tell that when you put candy imsttle dispenser, it
always comes out in the opposite order you put itlf you put in red,
yellow, orange, orange, and yellow, you will eallgw®, orange, orange,
yellow and red.

So when you use PUSH for saving the value of steg you save
it in RAM. When you PORP it, the last value you Iped is POPed. It
always goes in order, just like PEZ candy. If yush HL =10, and
then push HL = 11, the first value that is poppdéthe 11. By the way,

Lesson Ten: Working with Key Presses, Saving Register Values

our “RAM Pez Dispenser” for pushing and poppinguesl is called a
stack. Think of it as a stack of candy, or a stack of ealu

LD HL, 23
LD DE, 46
LD BC, 69

PUSH HL
PUSH DE

PUSH DE 23
PUSH BC POPHL g9

PUSH HL POP BC

Stack of 23
RAM 69
46 46
46 46
23 23

You can only push and pop 2 Byte registers. Tloeegfyou can
push and pop HL, DE, BC and AF. You cannot pusBAC, D, E, F,
H, or L by themselves.

HOWEVER, if you push HL, you don’t have to pop Hif.you
push in a piece of PEZ candy that belongs to yow,all have to eat it
when you pop out that piece of candy? NO! Youeainit, or you can
give it to a friend or your little sister (now, lehot be selfish here).
Let's say you need to save the value of HL = 16.y&u push it. If DE
needs that value later, you can use POP DE, andiDEqual 10. Be
aware that once you pop a value, it disappears thenstack. A piece

Lesson Ten: Working with Key Presses, Saving Register Values

of PEZ candy popped from the dispenser can onlgapagain if you
put it back inside the dispenser.

Pushing and popping is a very effective methods&uing the
values of registers. But be sure that your stdalalues is empty before
you exit your program. (In other words, each avele “push” should
have a “pop” somewhere in the program.) Otherwjse,will have an
error, possibly a crash.

One more thing to be careful about, and | ask goanice again
think of CALLs as Ti-Basic subprograms. If you kaavy PUSH in your
main program, YOU MUST POP IT in the main progralinyou pushed
a value in a subprogram, you must pop it in thapsogram. Your
calculator will have errors and probably crashatiypop a value outside
of where you pushed it.

Lesson Ten: Working with Key Presses, Saving Register Values

Key Codes (For getKey)

These are the codes returned from the Get Key routine. They are grouped into four categories:

« Primary-Function Keys (press the key)

* 2nd-Function Keys (press [2nd])

« Alpha-Function Keys (press [ALPHA])

e Alpha-Alpha-Function Keys (press [ALPHA] twice)

There are no codes for 2nd+Up or 2nd+Down, they always change the contrast.

Alpha-Alpha keys must be enabled with

SET Lwr CaseActi ve, (| Y+AppLw CaseFl ag)
kExtendEcho2 (SFC) is always returned in A. (KeyExtend) holds the keycode.

Primary-Function Keys
Key Equate Value Key Equate Value Key Equate Value
[Y=] kYEqu $49 [MODE] kMode $45 [X,T,0,n] kVarX $B4

[WINDOW] kW ndow $48 [DEL] kDel $0A [STAT] kStat $31

[zOOM] kZoom S2E < kLeft $02 V kDown S04
[TRACE] kTrace S5A A kUp S03
[GRAPH] kGraph %44 > kRi ght $01

[MATH] kMath $32 [xY] kKinv $86 [x%] kSquar e $BD

[APPS] kAppsMenu $2C [SIN] kSin SB7 [] kComma $8B
[PRGM] kPrgm $2D [COS] kCos $B9 [(] kLPar en $85
[VARS] kVar s $35 [TAN] kTan $BB [)] kRPar en $86

[CLEAR] kC ear S09 [7] kExpon 84 [%] kDi v $83

Lesson Ten: Working with Key Presses, Saving Register Values

[LOG] kLog $C1 [LN] kLn $BF [STO=>] kStore $8A
7] k7 $95 [4] k4 $92 [1] k1 $8F
(8] k8 $96 [5] k5 $93 [2] k2 $90
[9] k9 $97 [6] k6 $94 [3] k3 $91
[x] kMl $82 [kSub $81 [+] kAdd $80
[0] kO $8E
L] kDecPnt $8D
()] kChs $8C

[ENTER] KEnter S05

Second-Function Keys

Key Equate Value Key Equate Value Key Equate Value
[STATPLOT] kStat Ed $43 [QUIT] kQuit $40 [LINK] kLinkl O $41
[TBLSET] KTbl Set $4B [INS] kl ns SOB [LIST] KLi st S3A
[FORMAT] kFormat S$57 [2nd]+ < kBOL SOE
[CALC] kCal c $3B [2nd] + > kKEQL SOF

[TABLE] kTable $4A

[TEST] kTest $33 [MATRX] kMatrix $37 [V] kSgrt SBE
[ANGLE] kAngle $39 [SIN'] KkASin $B8 [EE] KEE $98
[DRAW] kDraw $2F [COS'] kACos $BA [{] KLBrace $EC
[DISTR] kDi st $38 [TAN'] kATan S$BC [}] kRBrace S$ED

(] KPi $B5 [e] kCONSTeA SEF

Lesson Ten: Working with Key Presses, Saving Register Values

(10" kALog $C2 [€"] kExp $CO [RCL] kRecall $0C
[u] kUnA $F9 [L4] kL4A $F6 [L1] KL1A $F3
[v] KVnA SFA [L5] kLA $F7 [L2] KkL2A $F4
[w] kWA $FB [L6] kL6A $F8 [L3] KkL3A $F5
I kKLBrack $87 []] kRBrack $88 [MEM]kMem $36
[OFF] KOf f $3F

[CATALOG] kCat al og $3E
[Kkl SEE
[ANS] kAns SC5

[ENTRY] kLast Ent $S0OD

Alpha-Function Keys

Key Equate Value Key Equate Value Key Equate Value
Page Up kAl phaUp $07 [A] kCapA S9A [D] kCapD $9D
Page Down kAl phaDown $08 [B] kCapB S9B [E] kCapE $9E

[Cl kCapC $9C [F] kCapF S9F

[G] kCapG SAO0

[H] kCapH SA1

[kCapl SA2 [N] kCapN SA7 [S] kCapS SAC
[J] kCapJ SA3 [O] kCapO SA8 [T] kCapT SAD
[K] kCapK SA4 [P] kCapP SA9 [U] kCapU SAE

[L] kCapL SA5 [Q] kCapQ SAA [V] kCapV SAF

Lesson Ten: Working with Key Presses, Saving Register Values

(M]

(X]

[Y]

(2]

(6]

("]

kCapM

kCapX

kCapY

kCapz

kThet A

kQuot E

SA6

$B1
SB2
$B3
scc

SCB

[R] kCapR $AB
L] kSpace $99
[:] kCol on SC6
[?] kQuest SCA
[SOLVE] kAl phaEnt er $06

Alpha-Alpha-Function Keys

Key Equate Value Key Equate Value Key Equate Value

[a]
[b]

[c]

(n]
[o]
(]
[a]

[r]

kLa SE2
kLb SE3
kLc SE4
kLSmal | n $EF
kLo SFO
kLp SF1
kLq SF2
kLSmal | r $F3

[d]

[e]

[f]

(g]

[h]

[s]

[t]

[u]

[v]

(w]

kLd

kLe

KLf

kLg

kLh

kLs

kLt

kLu

kLv

kLw

SE5 [i] kLi $EA
SE6 [j] kLi SEB
SE7 [kl kLk SEC
SE8 [I] kLI S$ED
SE9 [m] kLm SEE
SF4 [x] kLx $F9
$F5 [yl kLy SFA
SF6 [z] kLz S$FB
$F7

SF8

Thisispart of Learn T1-83 Plus Assembly In 28 Days
Copyright (c) 2002, 2003, 2004 Sean McLaughlin
See the file gfdl.html for copying conditions

[W] kCapW $BO

Lesson Ten: Working with Key Presses, Saving Register Values

Scan Codes (For _GetCSC)

These are the codes returned fromddecsc routine.

The [APPS] key is equated ¢@Mat ri x for portability to the TI-83. You may want to rexeate
it in your programs if it's confusing.

Key Equate Value Key Equate Value Key Equate Value
[Y=] skYEqu $35 [2nd] sk2nd $36 [ALPHA]skA pha $30
[WINDOW] skW ndow$34 [MODE]skMode $37 [X,T0,n] skG aphvar $28
[ZOOM] skZoom $33 [DEL] skDel $38 [STAT] skStat $20

[TRACE] skTrace $32 < skLeft $02 V skDown $01
[GRAPH] skGaph $31 A skUp $04 > skRi ght $03
[MATH] skmath $2F [X] skRecip $2E [X] skSquare $2D
[APPS] skMatrix $27 [SIN] skSin $26 [|] skComma $25
[PRGM] skPrgm $1F [COS] skCos $1E [(] skLParen $1D
[VARS] skvars $17 [TAN] skTan $16)] skRParen $15
[CLEAR] skQear $0F [V skPover $0E [+] skDi v $0D
[LOG] skLog $2C [LN] skLn $2B [STG=>] skStore $2A
[7] sk7 $24 [4] sk4 $23 [1] skl $22
[8] sk8 $1C [5] sk5 $1B [2] sk2 $1A
[9] sk9 $14 [6] sk6 $13 [3] sk3 $12
[X] skvul $0C [skSub $0B [+] skAdd $0A
[O] sk0 $21

[] skDecPnt $19

[(-)] skChs $11

[ENTER] skEnter $09

Thisispart of Learn TI1-83 Plus Assembly In 28 Days
Copyright (c) 2002, 2003, 2004 Sean McLaughlin
See the file gfdl.html for copying conditions

