Multi-user networking

With the Ti-83 series

This is an English summary of the fifth chapter of our Dutch essay. It covers most of my ideas in a jiffy, so don't feel embarrassed to ask if you don't understand something. (And if you want to know all about this: please read both versions if you can!)

The connection

[image: image1.jpg]Let's say we want four calculators to be able to communicate with each other. Then the first step would be that we have to connect these calculators together, in such a way that if one of the calculators sends out a message, all other calcs are able to receive it.

The best way to do this would be using infra red (or another wireless connection), since the light is being sent out by a sender, who has nothing to do with the recipients. Depending on the range of the transmission, a very large number of calculators can receive the signal without any problems.

But since a cable connection is much more simple to establish (and probably much more reliable too), I have been thinking about that as well, and I have come to the conclusion that you'd probably need a HUB that inverts the signals and then connects the lines of all calcs (see illustration), since the communication signal the calcs use is active-low. As I have explained before, active-low means that the default signal is high (5 volts), and the active signal is low (0 volts).

But I am not sure about this, since I have never tested it; there is still a small chance that simply connecting all lines might work as well in a small network.

Sending data

So we make sure that if one calculator sends out data, that all other calcs receive it. I'm not going to explain how to send over bytes trough the link port, since it's quite simple. But if you want some working routines (at least I hope they are still working) as example or to use in your own software, you can check out my own routines in commbyte.asm in this Zip-file for a cable connection, or the routines in our essay for an IR connection.

But sending out bytes to everyone is not what we want. Since we want to be able to send information to a specific calculator in the network, every calc needs it's own unique address. There are roughly two ways to accomplish this. The first being a server that does nothing but 'guarding' the address list and that assigns addresses to new calculators in the network. The second way is a peer-to-peer like construction where all calculators are equal, and all calculators have the responsibility over a part of the address list.

I've chosen the latter, since it allows for much more flexibility, and it doesn't 'waste' a calculator that has to be server. In our essay I have explained the use of an address list and how to keep it up to date by using examples, which I will not repeat here. My idea is to store a list of all the usernames and addresses in saferam1, in the following format:

.db
$01,"John",0

.db
$02,"Paul",0

.db
$03,"Dave",0

This list can be transmitted to other calculators with the use of a byte in each transmission that defines the type of transmission: $AA means "I request the address list" and $BB means "I send you the address list". There are more of these bytes of course, but you only need these two to set up a network:

· Phase one: There is no network

A calc tries to log on. It's new, so it has the address $00. It requires the address list to add itself, so it requests it from calc $01 by sending out the following string of data:

.db
$01,$AA,$00

(Format: [address recipient],[command],[address sender])

Since there is no network yet, it will get no response. After a few tries, it realizes that it has to become calc $01 itself.

· Phase two: Adding calculators

A second calc tries to log on. It requests the address list as well:

.db
$01,$AA,$00

The first calc replies by sending it:

.db
$00,$BB,$01,$06,$01,"John",$00

The fourth byte is of course a “preceding length byte” (I love that term (), since the recipient has to know how many bytes (loops) it has to receive after the first three. The new calculator takes the last address on the list ($01), increases it ($02) and adds it's own username to it. This name-address combination is being added to the list it just received (that should be in saferam1), and sent out to everyone in the network ($FF means everyone):

.db
$FF,$BB,$02,$0C,$01,"John",$00,$02,"Paul",$00

Calculator $01 stores the new address list, and is ready to welcome calc $03...

Now all we need for calc-specific chatting is $CC: "I send you a message". For instance if the user of calc $03 wants to say something private to the user of calc $01:

.db
$01,$CC,$03,"Who's that weirdo behind calc #2?",0

Note that there is no need for a preceding length byte in this situation, since there will be only one zero in the string that is being sent.

Error handling

In the last part of chapter five I've discussed a method that makes this fragile little network indestructible: Pinging. Every calculator uses $E1 to ping it's own address and the calc "in front of it" on a random interval. If we take a look at the actions of calc $03:

.db
$02,$E1,$03

The calc that is being pinged simply switches the addresses and sends the string back without "thinking". So in a normal network the response to the transmission of calc $03 should be:

.db
$03,$E1,$02

If the calc DOES NOT get a reply to this ping a few times, it's conclusion is that the connection with the calc "in front of it" has gone lost. It fixes this "gap" in the address list by decreasing it's own address and sending the new address list to everyone. The calcs "behind him" do the same, and the network is restored within hundredths of seconds.

Second, calc $03 pings it's own address, with a little difference. It adds the number of participants in it's network:

.db
$03,$E1,$03,$05

Since there should be only one calculator with the address $03 in the network, the proper response should be:

.db
-nothing-

If the calc DOES get a reply to the last ping, there are probably two networks getting together. Since every calculator has to have a unique address, this is a big problem, and must be fixed. For instance, if the calculator receives a response like:

.db
$03,$E1,$03,$07

There must be another network present with seven users. Both calculators compare the size of their own network with the received size. The smallest network has to be taken apart, so the calc with the smallest network waits for a random amount of time between, for instance, 0,5 and 1 seconds (to allow all other calculators in it's own network to discover the error and do the same) and logs in again by requesting the address list (from calc $01 of the largest network), adding itself to it and sending it to everyone else.

If both networks have the same size, the pinging calculator uses $E2 to exchange the length (in bytes) of the address list, in the same way the number of participants has been exchanged. This is necessary because both networks have to be unique and distinguishable for all calculators, because one network has to be taken apart entirely, and not bits and pieces of both networks.

The only calc that must not entirely follow these rules is the first one. It shouldn't ping the calc "in front of it" (since there is no calc in front of it), but the last calc in the network. And if that calc doesn't respond to it's ping, it removes it's name and address from the address list, replies to pings to that address until a new calc logs in, and starts pinging to the new last calc in the network.

That's all

This should be enough information for all you brilliant people to start programming multi-user applications! Feel free to use and adapt my theories, as long as you give me credit for my work (and Vincent alias Hammerhead for the IR routines), and E-mail me any improvements you are able to make!

Timendus@hotmail.com

