Compression Techniques, Smitemeister Software

Vincent de Bruijn aka Hammerhead, hammerhead_for_real@hotmail.com

INDEX

-What’s new?

-Introduction

-Run Length Encoding (RLE)

-Selective Run Length Encoding (SRLE)

-Gap encoding

-Nibble Huffman

-Huffman

-Ziv & Lempel

-Compressing data

-Last note

What’s new?

So, what’s new in the second release of this document? I added some better and more complex compression techniques. I found out what kind of compression Winzip uses and updated most of the code and text.

Introduction

In this document I'll explain some of the useful compression techniques I found or figured out myself. There are a lot of compression documents on the internet, but I find that the good ones are really for advanced users. Since the simple ones don’t offer much, I placed myself for the difficult task to explain the better compression techniques in a way that even beginning programmers can understand them, provided they start from the beginning and grow more advanced throughout the document. So don’t worry if you’re already somewhat advanced, you can just scan through the first techniques till you come to the more difficult ones.

This document is focused on compression in Ti-assembly, although you can still learn the techniques if you don’t know assembly. One thing you should know if you’re not familiar to assembly is that a $-sign indicates that the number is hexadecimal and a %-sign indicates that it is binary.

I made some possible decompression routines (intended for 83/83+, but easily adaptable), which are in the other included documents. Since I don't know what purpose they will serve, they can be made better in a specific program. Anyway, please give me credit if you use them.

Run Length Encoding (RLE)

This is the easiest technique in the world. Even a pinhead could figure it out. You didn't? Well, no offence, I'll explain it anyway...

This:

$00,$00,$00,$00,$00,$00,$00,$00

Could be this:

$08,$00

Now don't panic, you didn't lose your bytes, they're just stored in another way. You see, we had 8 zero bytes, so instead of listing all those zero's we just say we have

$08 times the $00 byte.

So you see, you simply change a sequence of the same byte into 2 bytes, namely the number of the byte occurring in the sequence and the byte itself. Not necessarily in that order as you might have guessed, but I found out the decompressor could be made slightly smaller in this manner. Plus you can use the $00 byte as an end sign of your compressed data, because you’ll never say that you have a byte zero times… or at least I hope you won’t (.

Another example. In the same way, this:

$00,$00,$00,$00,$00,$00,$00,$FF,$FF,$FF,$00,$00,$00,$00,$00

Could be this:

$07,$00,$03,$FF,$05,$00

We have the $00 byte 7 times, the $FF byte 3 times and the $00 byte 5 times.

Run Length Encoding isn’t that spectacular, but it’s simple and fast. However, the next technique is also simple and fast, but offers a better compress ratio. This was more of an introduction to compression to help you understand the rest better.

Selective Run Length Encoding (SRLE)

This isn't really a different technique. The problem with Run Length is that it compresses all the bytes. Sometimes you have only 1 or 2 bytes (mostly $00 and $FF) which repeat themselves a lot and rest is just a waste of $01 bytes. Example:

$00,$00,$00,$00,$FF,$16,$74,$00,$00,$00,$00,$E5,$30

Let’s compress this the Run Length way:

$04,$00,$01,$FF,$01,$16,$01,$74,$04,$00,$01,$E5,$01,$30

The size only got bigger. And that's not what we want. We want it to be smaller, right? So what if we just said that the decompressor only looks for a length byte after the $00? This would mean that we’d have to turn the $00 byte and it’s length around (so the length byte doesn’t gets mistaken for one of the data bytes) and simply place the other bytes without a length byte:

$00,$04,$FF,$16,$74,$00,$04,$E5,$30

As you can see only both the $00 bytes have a length behind them.

Unfortunately, now we can’t use the $00 byte as end sign anymore. Still, the theory is good that we wouldn’t want to have a $00 length byte. So the end sign is now first the compressed byte, a $00, and then another $00. We wouldn’t want zero times a $00, so that would be a good signal for the decompressor to stop.

Of course, the decompressor must know that only the $00 byte is compressed. With a simple cp command (see the included decompressor) you can change the old Run Length decompressor into the new Selective Run Length decompressor! I also added one for multiple compressed bytes.

Listing the maps/sprites/pictures/bytes that become larger instead of smaller through compression is always a good idea. Or you could add indicator bytes in front of them to show if they’re compressed or uncompressed. It only costs you 1 byte per item more instead of the much larger compressed size in some cases. This is why you’ll probably be using SRLE more than RLE.

Gap encoding

Now we still have the possibility that we have a lot of zero bytes, but not next to each other.

Remember this one?

$00,$00,$00,$00,$00,$00,$00,$FF,$FF,$FF,$00,$00,$00,$00,$00,$00

You could also compress it like this:

%11111110,%00111111,$FF,$FF,$FF

What did I do? In the first 2 bytes I gave the location in bits where the $00's are:

 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1

$00,$00,$00,$00,$00,$00,$00,$FF,$FF,$FF,$00,$00,$00,$00,$00,$00

The first 1 bit indicates that our first byte should be a $00, the second 1 bit also and so on till we meet the first 0 bit. This indicates that the byte is something else, so not $00. That byte is the first byte after the binary numbers, which is $FF. The second 0 bit is the second byte after the binary numbers and so on.

If you have a lot of sprites which kinda look like this... (When using greyscale you get a lot of sprites with zero's):

$00

$00

$17

$00

$34

$00

$00

$00
... you could compress it like this:

%11010111,$17,$34

If you have a data block that uses a lot of the same byte, but is too frequently interrupted by other bytes to be sufficiently compressed with run length, gap encoding is the way to go. Although I recommend using one of the later compression techniques, which are simply better. Yet, beginning with simpler compression techniques you understand is often better.

Nibble Huffman

You’ve probably heard of Huffman encoding before and that it has got something to do with trees. Now don’t look panicked outside at your oak tree, we’ll stay inside for now (.

I won’t start nagging about trees just yet; first we’ll explore the basic principle of Huffman using Nibble Huffman encoding.

So, what's the idea? Huffman encoding is a ‘probability’ compression technique, which basically means that the bytes that are more probable to occur are stored in fewer bits than the ones that are less probable to occur. Sounds logical right? It would mean that the bytes you use often are stored smaller, which saves a lot of bytes, and the bytes you use less often are stored larger, which costs only a couple of bytes. Now the question is how do we accomplish this.

Imagine you have a block of data where you use some bytes more than others, for example text. Characters as 'e' and 'o' are used way more than 'q' and 'z'. Now they are each stored in 8 bits, according to their ASCII code. So we have a possibility of 256 characters, each 8 bits long. If we would apply our idea to make our more frequent used characters smaller, say 4 bits, we would have only 16 possibilities left. Since we want more characters than that, we couldn’t just store our 16 most used characters in 4 bits and be done with that. But what if we would just store 15 of our most used characters in 4 bits? That would leave 1 possibility of 4 bits open to indicate that it is NOT one of our 15 most used characters! Then we could use the next 4 bits for the next 15 most used characters and so on until we haven’t got any characters left.

4 bits together form a ‘nibble’, hence the name.

Feel your head spinning? Let’s take it through an example. Here are the 30 characters I used most in the RPG, The Core of Light with the binary code behind them:

1.

= 0000

(space)

2.
e
= 0001

3.
o
= 0010

4.
a
= 0011

5.
0
= 0100

6.
t
= 0101

7.
s
= 0110

8.
r
= 0111

9.
.
= 1000

10.
n
= 1001

11.
i
= 1010

12.
h
= 1011

13.
u
= 1100

14.
l
= 1101

15.
d
= 1110

REST Sign = 1111

16.
m
= 11110000

17.
y
= 11110001

18.
w
= 11110010

19.
g
= 11110011

20.
f
= 11110100

21.
c
= 11110101

22.
p
= 11110110

23.
!
= 11110111

24.
I
= 11111000

25.
k
= 11111001

26.
,
= 11111010

27.
b
= 11111011

28.
v
= 11111100

29.
'
= 11111101

30.
Y
= 11111110

REST Sign = 1111

; Next character would be 111111110000 and so on.

As you can see the characters become large very quickly. This is not a problem with text, because you’ll probably only use about 60 characters. As you see we save 4 bits on the 15 most used characters, nothing on the next 15 and we lose on the rest. This might seem as not much, but you must keep in mind that my 15 most used characters are about 80% (!!!) of my entire text! This might be different with your text of course, but it’s a good example…

Creepier even is that the next 15 characters take up 16% of the entire text… Why creepy? Well, 16% is 80% of the remaining 20%… and the first 80% wasn’t just 80%, it was 80.00%. Coincidence? Well… yeah, maybe (
So we save half a byte on 80% of our text and lose some on 4%. So my guess is the compress ratio will always be close to 40%.

Huffman

Okay, now you understand the principle of probability compression, so I can start nagging about trees. No, we’ll still stay inside for now (
The list of characters in Nibble Huffman encoding can be resembled as a ‘tree’:

[image: image1.png]
As you see, if we take a left ‘branch’, we add a 0 to our code and if we go right, we add a 1. Thus, by going 4 times left, we get on the leaf 0000, which is a space. Still, it doesn’t look like a normal tree, does it? It looks like one tree on another… you won’t find that in nature (.

The split-points are called ‘nodes’ or ‘parents’. A parent splits up in 2 ‘children’. Notice that a parent can be a child of another parent. The end-points with the characters are also called ‘leaves’. I will only use the terms parents and children.

So now we have got to optimize this tree. How do we do that? There is a trick to obtain the best possible tree. First we have to make a frequency list of our characters, from the highest to the lowest. Here is a small list:

e
= 16

a
= 10

g
= 7

h
= 3

z
= 1

Now we take the 2 lowest, add their frequencies and put it back in the list as the parent of the 2 characters:

e
= 16

a
= 10

g
= 7

P1
= 4

Parent1 = h & z

Now we already know how one part of the tree is going to look like. The ‘h’ and the ‘z’ will be the children of the same parent. Now we continue this till we have all the parents:

e
= 16

P2
= 11

a
= 10

Parent1 = h & z

Parent2 = g & P1

You see that a parent can also have another parent as one of his children. Third parent:

P3
= 21

e
= 16

Parent1 = h & z

Parent2 = g & P1

Parent3 = P2 & a

Last parent:

P4
= 37

Parent1 = h & z

Parent2 = g & P1

Parent3 = P2 & a

Parent4 = P3 & e

The last parent, parent 4, is the total of all the frequencies of the characters and the start of our tree. Taking it from there, we can draw the tree:

[image: image2.png]
Now we can assign codes to each character. Then we have the problem how to store the tree or the codes in your program. The tree is rather large and the codes all have different lengths and also take up too much space. There is a very easy way to store a tree, where the characters on each level are as far to the left side as possible:

[image: image3.png]
All the characters still have the same length, only different codes. If we’d always build our trees like this, all we’d need to know is the length of each character.

e
= 1

a
= 2

g
= 3

h
= 4

z
= 4

This is what we would store in our program. Now how do we assign codes to the characters if we only have their lengths? We know that the first character is always to the far left side, so it only has zero’s in its code. If it had length 4, its code would be 0000, but now the first character has length 1, so its code is 0.

e
= 1
/ 0

a
= 2

g
= 3

h
= 4

z
= 4

The next character can’t start with a 0, because the tree ends there in the character e. So it has to start with a 1. Then we apply the same method as before and only take left branches until we have reached its length. Its length is 2, so its code is 10. If we continue this for the rest of the characters we get:

e
= 1
/ 0

a
= 2
/ 10

g
= 3
/ 110

h
= 4
/ 1110

z
= 4
/ 1111

All we really do is add 1 to the previous code and fill the rest up with zero’s to create a code of the correct length. Suppose we had these characters with lengths:

e
= 3
/ 000

; All zero’s in the beginning

a
= 6
/ 001000
; Add 1: 001. Fill with zero’s: 001000.

g
= 6
/ 001001
; Add 1: 001001. Already length 6, so no zero’s.

h
= 8
/ 00101000
; Add 1: 001010. Fill with zero’s: 00101000.

z
= 10
/ 0010100100
; Add 1: 00101001. Fill with zero’s: 0010100100.

What we have now is that none of the codes is a prefix of another code, e.g. 00 is a prefix of 001.

This concludes Huffman encoding. Huffman does compress better than Nibble Huffman, as you probably can imagine. However, Nibble Huffman has a smaller and faster decompressor. If you only want to compress text, Nibble Huffman is often a better choice. On my complete text of 8000 bytes, Huffman only saved 200 bytes more than Nibble Huffman. This is because with text, you only use about 50 –60 characters. If you want to compress something which uses all 256 bytes, Nibble Huffman does very poorly.

Ziv & Lempel

There are a lot of Ziv & Lempel techniques (LZ77, LZ78, LZH, LZW, LZSS), some slightly different from the rest, others completely different. Yet they have one common factor and that’s that their compression is based on removing repeating sequences of bytes. Something you see a lot, once again, with text. No wonder text is one of the best compressible kinds of data. Good news for RPG makers who want long storylines (.

I won’t pick one of the Ziv & Lempel techniques and explain that. Instead, I’ll explain the principle and how to compress and decompress that with assembly.

This compression technique is really a bitch… I’m still trying to get the decompressor to work. I tried to get the best compression possible, which I have somewhat succeeded in. Decompressing such data is really tricky, as I’ll explain.

Removing repeating sequences of bytes… Sounds easy doesn’t it? Suppose we have:

“George Smith says: Hi, I am George Smith.”

We have a repeating sequence of bytes here, namely George Smith. It would save us a lot of bytes by just removing the second George Smith and use a pointer to where the decompressor can find the removed string. We’d also have to say how long the removed string was and then the decompressor has enough information to restore the removed string. This is our compressed string:

“George Smith says: Hi, I am “,1,12,”.”

George Smith starts at position 1 and is 12 characters long. This seems simple enough, but how do you let a compressor see how he can compress a string in the most optimal way?

You let the compressor start at the second character and let him work his way up from there. Meanwhile, for each character you compare all the previous characters with it. If there is a match, you take the 2 characters after the matching characters and compare those. You continue this until the characters don’t match anymore. Then you store the length of the sequence of characters that matched and the pointers to the beginning of both sequences. Then you continue till you have compared the current character with all the characters before it. If you have another match which sequence is longer, then of course you store the data of that match. You store all the matches you’ve found, and at the end of the string you replace the last sequence of each match with a pointer and a length byte.

Note: I’m not going to explain this technique too thoroughly, because I haven’t worked out the details myself.

We still have a lot of problems now. We don’t know if a byte is supposed to be a character or a pointer. If you use this technique on its own, you would have to place a special indicator byte for each pointer byte, which would be a waste of space. So we solve this using Huffman compression. We make the length bytes the first bytes instead of the pointer bytes, because there are way more numbers that represent pointer bytes, than numbers that represent length bytes. We add the length bytes to the list of characters and compress everything with Huffman. We don’t compress the pointer bytes, because we know that after each length byte, there comes a pointer byte.

This is sort of the technique that Winzip uses. And like Winzip, it’s only useful if you want to compress large files and decompress them when you need them, which is not very handy in something like a game. There you want to decompress only a section.

So now we still have a huge amount of problems. First we have to list all the compressed bytes which represent a length byte. This will also take up some space. This can be solved by just adding all the length bytes at the end of the Huffman list instead of throughout the list, but it would make the compressed data larger.

Second, we can’t compare the sequences of matching characters on a base of length, because the length of characters differ. And we can’t find out how long each character is, because after the Ziv & Lempel compression, the frequency of characters change. Next to that we don’t know how large the length + pointer bytes will be…

Now this isn’t such a huge problem, but it does make the compression less accurate.

Third, there is the problem of recursion. In this system, it is possible to have compressed data in compressed data in compressed data and so on…

This means that you would have to build a decompressor, which at any time can store the pointer to the bit where he currently is, jump to a different part in the data where he can encounter the same problem again… and again… And now comes the fun part, (, he would have to keep track of every length byte he is working on. Example: If the decompressor is working on a match of 6 characters, and the last 3 are the beginning of another match, the decompressor would have to stop halfway the last match, because the length of the first match was reached, and we don’t want to know anymore characters then.

If you have specific questions about this technique, or you tried to implement it, but got stuck on something, you can always e-mail me and I’ll be gladly to tell how I solved some of the problems.

Compressing data

Compressing large amounts of data can take up a lot of time. So usually you write a program to do it for you. The compressor I've written a long time ago is a squished 83 program that stores the data as hexadecimal with a theta as $ in an unsquished basic program. From there you can either copy it manually using edit, or you could send it to your computer and use some kind of program that allows you to copy the code out of basic programs. I use Ti-Graph Link for this. I change the theta's to $ and copy it in my programs. I'll give the code, but it probably needs adapting to your specific needs. It uses the savesscreen to temporally store the compressed data, which therefore may not be any larger than 768 bytes (Since it doesn't really matter how large the compressor is, you can always make a backup buffer of 2000 bytes instead of using the savesscreen). The romcalls are for Ti-83, but I'm sure you can quite easily find the equivalents for other Ti's. The program uses the byte 255 to end the compression. So if you use 255 (it isn't used in text), you'll have to change that too. For now I have only written a compressor for Nibble Huffman compression.

Last note

I don’t think I’ll be writing any compression or decompression routines. I have written one in Java for the Huffman/Ziv & Lempel compression I use in The Core of Light, but it is specifically designed for that game. You’ll have to write your own compression routines I’m afraid.

I don’t there will be an update of this document, but hey, you never know (.

I’m always willing to help or give advice on compression, so emailing me will always result in a reply.

