

TI-BASIC REFERENCE CARD v1.0 1 ©2005 Steve Hartmann

What Is TI-BASIC?
The primary programming language for the TI
calculators because it is easy to learn and use.
Although it is capable of advanced games, it is
best suited for simple, text-based programs
because it is especially slow with rendering
graphics and getting user input.

Data Types 10 7.52 �Hello�
Integer: Positive or negative numbers with no
fractional parts or decimal places. Zero is an
integer, too.

Floating Point: Positive or negative numbers that
contain a decimal point or exponential notations.

String: A sequence of characters surrounded by
quotes.

Boolean: The logical values true/false used to
compare data or make decisions.

Programs Name=TESTPROG
Definition: An organized, step-by-step set of
instructions that, when executed, causes the
calculator to behave in a predetermined manner.

How to Create a Program:

1. Go to the PRGM menu (press PRGM).
2. Scroll over to NEW and press ENTER.
3. Type in the name of your program.
4. Press ENTER to confirm the program

 name.
Rules for Naming Programs:

1. Program names can only be up to eight
characters long.

2. The characters must be A-Z or θ.
3. The first character must be a letter.
4. Each program must have its own specific

name (no duplicates).
Hints:

1. You should choose a program name that
actually relates to your program (such as
its title).

2. If your program is insignificant (such as a
subprogram for a larger program), start it
with θ or Z so that it appears at the
bottom of the program list.

Operators + and =
Arithmetic
 + Adds two numbers

- Subtracts one number from another
* Multiplies two numbers
/ Divides one number by another

Logical
 and Compares two operands; returns true if
 both are true, otherwise returns false
 or Compares two operands; returns true if
 either operand is true, otherwise
 returns false
 xor Compares two operands; returns true if
 either operand is true, but not both
 not Returns false if its operand is true,
 otherwise returns true
Comparison
 = Returns true if the operands are equal
 ≠ Returns true if the operands are not
 equal
 > Returns true if the first operand is
 greater than the second
 ≥ Returns true if the first operand is
 greater than or equal to the second
 < Returns true if the first operand is
 less than the second
 ≤ Returns true if the first operand is
 less than or equal to the second
Hints:
 1. and has a higher importance than or

Boolean Logic 1 0
Definition: Based on the principle that a
conditional can only be true or false. A true value
is represented by 1 or any nonzero number. A
false value is represented by 0. Not returns 0 if
the number is not zero.

The Truth Table:

A B and or xor

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

Storing & Deleting DelVar !
Storing: Values are stored to and recalled from
memory using variable names. When an
expression containing the name of a variable is
evaluated, the value of the variable at that time
is used.

Format:
 Value!Variable
 Expression!Variable
Example:
 8!A
 3X+2!B

Deleting: The contents of the variable are
deleted from memory. The variable is
automatically set to zero the next time that it is
used. This works for every variable.

Hints:
 1. The DelVar command doesn�t need a
 newline/colon following the variable name,
 so you can take the command on the next
 line and link it to the end of the variable.

Format:
 DelVar variable
 DelVar variableDelVar variable
Example:
 DelVar X
 DelVar AOutput(2,3,�Hello

Menus Menu
A menu screen at the beginning of a program is
sometimes needed. If you want to organize your
program so that you can control program flow
into the different parts of it, then use the Menu
command. Although it is a generic menu and it
only works on the homescreen, it is more
economical than using simple text with Goto/Lbl.

If Menu is encountered during the program, the
menu screen is displayed with the specified
menu title and menu items, the pause indicator
turns on, and execution pauses until you select a
menu item. The menu title is displayed at the
top of the screen and it must be enclosed in
quotation marks. You can have up to seven pairs
of menu items. Each pair comprises a text item
that will be displayed on the screen, and a label
item that will be branched to if you press ENTER
on it or press its corresponding number.

Hints:
 1. Strings will work for the menu title and the
 menu item text.
 2. Variables won�t work for the menu item
 label.
 3. Using the Menu command doesn�t clear
 the homescreen; it merely displays the
 menu screen. This allows you to not have
 to put ClrHome before it.

Format:
 Menu(�title�,�text1�,label1,�)
Example:
 Menu(�Choose�,�Right�,1,�Wrong�,2

Pausing Pause
If you want to suspend the execution of your
program at a certain point, use the Pause
command. During the pause, the pause indicator
is on in the top-right corner. The user needs to
press ENTER to resume execution. The Pause
command has an optional argument that can be
either a variable or text. The value can be
scrolled right/left if it is wider than the screen.

Hints:
 1. If you have a Disp statement before the
 pause, you can take the text/variable from
 the Disp command and put it as the
 optional argument for the Pause. This
 allows you to delete the Disp command.

Format:
 Disp �Hello World!
 Pause
Example:
 Pause �Hello World!

User Input Input Prompt
Definition: Getting input from the user is a basic
part of any program. It provides a way of
determining the direction that the program takes
or changing certain variables.

Types: Input, Prompt

Input: Asks the user for the value of some
variable and it stores the inputted value for the
variable. If the variable is a string, the user must
put quotes around the value. The same thing
needs to be done for a list ({} instead) and a
matrix ([] instead). The Input command allows
you to put an optional text display, giving the
user a better understanding of what to put for
input.

Hints:
 1. If you leave off the optional text display
 it will just put a question mark on the
 screen.
 2. Only the first 16 characters of the
 optional text display will be shown on the
 screen.
 3. You can store text to a string and use
 that for the optional text display. If you
 use the text a lot, it might be smaller.

Format:
 Input variable
 Input �text�,variable
 Input Strn,variable
Example:
 Input A
 Input �Your Name?�,Str1
 Input Str1,[A]

Prompt: Like Input, it will ask the user for the
value of some variable, and it will work with the
same variables (with the same rules applying). It
allows you to ask for a series of values to be
stored in the respective variables.

Hints:
 1. Prompt will print the variable that you
 are asking the user for. This can be a
 useful alternative to using the optional
 text display that the Input command has.

Format:
 Prompt variableA,variableB,variableC
Example:
 Prompt A,Str1,[A]

Displaying Text Disp Output
Definition: Displaying text is a fundamental part
of almost all programs. Most will have
information that needs to be displayed on the
screen, either for instruction for the user or for
giving the screen a more graphical appearance.

Types: Disp, Output

Disp: Displays the value of each argument after
the command on the homescreen. If the value is
a variable, the current value will be displayed. If
the value is an expression, it is evaluated and
the result is displayed on the right side of the
next line. If the value is text within quotation
marks, it is displayed on the left side of the
current line.

Hints:
 1. You can link Disp commands together by
 adding the arguments from the
 succeeding Disp commands to the first
 command, separating each one by a
 comma.
 2. The text does not wrap around to the next
 line if it is more than 16 characters.

Format:
 Disp valueA,valueB,valueC
Example:
 Disp �Hello�,Str1,A

Output: Like the Disp command, it will display
the value of the argument after the command on
the homescreen. It improves upon Disp,
though, by allowing you to display text at a
specific location. You can specify the row and
column. The screen has eight rows (1-8) and
sixteen columns (1-16), going from top-down
and left-right.

Hints:
 1. The Output command can only have one
 argument; no linking like Disp.
 2. Any existing text on the screen will be
 overwritten unless you precede the Output
 command with ClrHome.
 3. The text will wrap around to the next line
 if it is more than 16 characters.
 4. Any text past row 8, column 16 will not
 show on the screen.
 5. If you put Output(1,1,��) at the end of
 your program, it will get rid of the �Done�
 that appears after your program is done.

Format:
 Output(row,column,value)
Example:
 Output(3,2,�Hello World!

Reals A-Z θ
Real variables are used for storing numbers.
There are 27 letter variables (A-Z and θ) that
can be used, as well as the Finance and Window
setting variables. Values are stored to and
recalled from memory using variable names.
When an expression containing the name of a
variable is evaluated, the value of the variable at
that time is used. You can archive real variables
so that they won�t be edited or deleted
inadvertently.

Hints:
 1. Avoid using X and Y for anything other
 then temporary counters because they
 change whenever the graphscreen is
 accessed.
 2. Once you have started using variables for
 certain functions, make sure to continue
 using them for those functions.

Loops For While Repeat
Definition: Loops cause a segment of code to
repeat until a stated condition is met. Making
sure that the appropriate loops are used is very
important.

Types: For, While, Repeat

For: The loop is repeated a specified number of
times. It has four arguments: the variable (A-Z
or θ), the beginning value, the ending value, and
the increment. The increment is optional (the
default is 1) and it can be negative. This is the
fastest loop.

Format:
 For (variable,start,end[,increment])
 Command
 Command
 End
Example:
 For (X,1,16
 Output(1,X,�X
 Output(8,X,�X
 End

While: The loop will continue while the
conditional is true. The conditional is tested at
the beginning of the loop, so if the conditional is
false the loop will be skipped entirely. To ensure
that the loop will be gone through, you should
declare the values of the variables in the
conditional before the loop. You should also
watch out for infinite loops, which have a
stopping condition that will never be reached.

Format:
 While (condition)
 command
 command
 End
Example:
 While X<100
 Input �Guess?�,X
 End

Repeat: The loop will continue until the
conditional is true. The conditional is tested at
the end of the loop, so the loop will be gone
through at least once. This allows you to not
have to declare the values of variables in the
conditional. Like While loops, watch out for
infinite loops.

Format:
 Repeat (condition)
 command
 command
 End
Example:
 Repeat Ans
 getKey!K
 End

Exiting Programs Return Stop
There are two different commands that you can
use for terminating the execution of a program:
Return and Stop. Return stops only the current
program and allows any program that called
your program to continue running. Stop causes
all of the programs to quit and it returns you to
the homescreen (unless your program was called
from an Assembly program or shell.) So, you
should use Return instead of Stop. You don�t
have to use either of these commands if you can
organize your program so that it just naturally
quits. If the calculator reaches the end of a
program, it will automatically stop executing.

Program Flow If Then Else End
Definition: Statements and structures used to
change the order in which the program
operations will occur. The program can carry out
different actions depending on a condition.

Types: If, If-Then-End, If-Then-Else-End

If: A conditional branching statement used to
determine whether a stated condition is true. If
it is, it will execute the single command on the
next line.

Format:
 If (condition)
 command
Example:
 If A>90
 Disp �Good Job!

Hints:
 1. If you are only changing a variable, you
 don�t need to include the If statement.
 This works really good for keypresses.

Example:
 B+2(A=100!B

If-Then-End: Like the If branching statement, it
will check if the stated condition is true. Unlike
If, however, it will execute all of the commands
before the End statement, instead of just the
command on the next line.

Format:
 If (condition)
 Then
 command
 command
 End
Example:
 If K=21
 Then
 ClrHome
 Stop
 End

If-Then-Else-End: A conditional branching
statement that includes a path to follow if the
condition is true and a path to follow if the
condition is false. All of the commands before
the Else will be executed if the condition is true,
while all of the conditions after the Else will be
executed if it is false.

Format:
 If (condition)
 Then
 command
 Else
 command
 End
Example:
 If AB
 Then
 �Hello!!Str1
 Else
 �Goodbye!!Str1
 End

Hints:
 1. If the commands after the Else consist
 only of store statements that are different
 from the store statements before the Else,
 you don�t need the Then-Else-End.

Example:
 �Goodbye!!Str1
 If AB
 �Hello!!Str1

TI-BASIC REFERENCE CARD v1.0 2 ©2005 Steve Hartmann

Lists dim Fill seq
Lists are the most versatile variable. A list is just
a group of numbers that is contained within one
variable. Lists are the most secure variable
because you can make your own whereas all the
other variables are shared by every program.
There are six built-in lists (L1-L6). A custom list
can be one to five characters, comprised of A-Z,
θ, and numbers, but it must begin with a letter
or θ. Lists can be up to 999 elements long.
There are several commands that you can use
with lists.

Hints:
 1. Avoid using lists other than L1-L6.
 2. Make your custom list names as short as
 possible.
 3. Use the dim command as an installation
 flag to check if your program is installed.

Types: L, dim, Fill, augment, seq, sortA, sortD

L: This command is used to identify a user
created list. If you create a list using the curly
braces and separating each element with a
comma, then you don�t need the L.

Example:
 {1,2,3,4,5!SCORE

dim: Used to find the dimensions of the list, it
returns the number of elements of the list. You
can use dim with L to create a custom list. When
you first create a custom list all of the elements
are zeros. You can use dim to redimension an
existing list. The elements in the old list that are
within the new dimension are not changed. The
extra elements are filled by zero. Elements in
the old list that are outside the new dimension
are deleted.

Example:
 3!dim(LHIGH

Fill: Replaces each element in the list with the
specified value. This command is preferred over
ClrList.

Example:
 Fill(5,LNEW

augment: Adds the elements of one list to
another. You can also put variables in between
curly braces and separate them with a comma
and use them as a list. This is useful for saving.

Example:
 augment(L1,{A,B,C,D!L2

seq: Returns a list in which each element is the
result of the evaluation of an expression with
regard to a variable for the values ranging from
begin to end at the steps of an optional
increment. The default for the increment is one
and the increment can be negative. The variable
doesn�t need to be defined.

Example:
 seq(3X,X,1,5!L1

SortA/SortD: Sorts the list elements in
ascending/descending order. With one list, it
sorts the elements of the list and updates it in
memory. With two or more lists, it sorts the
main list and then sorts all the other lists by
placing each element in the same order as the
main list. All lists must have the same
dimension.

Example:
 SortA(L1,L2
 SortD(L1,L2

Math rand abs int
There are several math functions that programs
can use. These functions can be used for making
random input in a game or for making math
programs. This list doesn�t cover all of them, but
it does cover the most useful ones.

Types: rand, randInt, iPart, fPart, abs,
 round, int, min, max

rand: Generates and returns one or more
random numbers between zero and one. The
optional argument allows you to specify how
many random numbers you want. You can
multiply rand by another number to get a
random number greater than one. To change the
initial seed value, store any nonzero number to
rand. Just store zero to rand to restore the
original seed value. The seed value affects
randInt.

randInt: Generates and returns one or more
random integers between (and including)
specified lower and upper integer bounds. You
can generate a list of random numbers by
specifying an integer greater than one for the
number of trials (the optional third argument).

iPart: Returns the integer part of numbers,
expressions, lists and matrices.

fPart: Returns the fractional part of numbers,
expressions, lists and matrices.

abs: Returns the absolute value of numbers,
expressions, lists and matrices.

round: Returns a number, expression, list or
matrix rounded to a user specified number of
decimals. If the number of decimals argument is
omitted, the value is rounded to the digits that
are displayed.

int: Returns the largest integer. For some given
values, the result of int is the same as the result
of iPart.

min: Returns the smaller of two values or the
smallest element in a list. If two lists are
compared, min returns a list of the smaller value
of each pair of elements. If list and value are
compared, min compares each element in list
with value.

max: Returns the larger of two values or the
largest element in a list. If two lists are
compared, max returns a list of the larger value
of each pair of elements. If list and value are
compared, max compares each element in list
with value.

Clearing The Screen ClrHome
It is often useful to clear the screen before
running a program, during the execution of a
program, or after a program finishes running.
The command to do this is ClrHome. One of the
best places to put a ClrHome command is right
before displaying text/variables. This ensures
that there is nothing else on the screen.

Strings Str1-Str0
Strings are used for manipulating text. A string
is a sequence of characters enclosed within
quotes. Strings can hold as many characters as
the amount of free RAM will allow. You can put
numbers, letters, and even commands in a
string. Each command is counted as one
character. The two characters that you can�t
use are quotes and the store command. There
are ten built-in string variables (Str1-Str0).
There are several commands that you can use
with strings.

Hints:
 1. You can combine two or more strings by
 putting the + operator between them.
 2. Use strings and the Output command to
 make maps on the homescreen.
 3. Store commands in a string instead of
 writing the separate characters of the
 command.

Types: length, sub, inString, expr

length: Returns the number of characters in a
string. The string can be a string of text or a
string variable.

Example:
 length(Str1

sub: Returns a string that is a subset of an
existing string. The string can be a string of
text or a string variable. There are three
arguments: the string, the start position of the
first character of the string, and the number of
characters that is wanted.

Example:
 sub(�HelloWorld�,1,5!Str0

inString: Returns the character position in a
string of the first character of the substring.
The string can be a string of text or a string
variable. There are two required arguments
and an optional third argument: the string, the
substring text, and the character position at
which to start the search. The default is one. If
the string does not contain the substring or the
start is greater than the length of the string,
inString returns zero.

Example:
 inString(�Welcome Back�,�Back

expr: Converts the character string contained
in the string to an expression and executes it.
The string can be a string of text or a string
variable.

Example:
 expr(Str1

Ans A-Z Str1-Str0 L1-L6 [A]-[J]
The Ans variable is a temporary variable that
changes every time you store something. It can
hold any variable or text. It is the fastest
variable. It is mostly useful when you are just
manipulating one variable. To use Ans, put an
expression or a calculation on a line by itself and
it will be stored to Ans.

Hints:
 1. One of the best places to use Ans is for
 reading keypresses.
 2. If you are manipulating two variables, it�s
 best to just use the variables.

Example:
 getkey
 X+(Ans=26)-(Ans=24!X

TI-BASIC REFERENCE CARD v1.0 3 ©2005 Steve Hartmann

Reading Keypresses getKey
If you want to have the user press a key to do
something in your program, use the getKey
command. getKey returns a number
corresponding to the last key pressed. Each key
number has two parts: row (1-10) and column
(1-6). If no key has been pressed, getKey
returns 0. You can press ENTER at any time
during program execution to break the program.

Common getKey Functions:
 Repeat Ans
 getKey!K
 end

 getKey!K
 X+(Ans=26)-(Ans=24!X

 Repeat getKey
 End

Keycode Chart:

Branching Goto/Lbl
Definition: Jumping to different parts of a
program is sometimes necessary if you don�t
want every part of a program to run or if you
want to skip to a certain part of a program if a
certain condition occurs. The commands to do
this are Goto (go to) and Lbl (label).

Goto/Lbl: In order for Goto and Lbl to work, you
need to have both. The label can be one or two
characters (A-Z, 0-9, or θ). When Goto is
encountered, it notes the label and proceeds to
search for it from top to bottom in the program.
This can really be slow if the label is deep within
the program. It also has the tendency to make
your code harder to follow. And, if you use
Goto/Lbl incorrectly it can lead to memory leaks.
A memory leak is where you exit a loop or a
conditional by using Goto. If done enough times,
the calculator will run out of memory. So, you
should use Goto/Lbl sparingly.

Format:
 Goto character1(character2)
 Lbl character1(character2)
Example:
 Lbl AA
 X+1!X
 If X<100
 Goto AA

Subprograms prgm Return
Subprograms are programs that are called by
other programs to do a particular task. A
subprogram is useful for doing repetitive tasks.
Instead of having to type the code for a function
several times, you just type it once and call the
program whenever you want to use it in your
program. This makes your program smaller and
it keeps it going as fast as possible. It also
makes editing and debugging easier. You just
have to change the appropriate subprogram
instead of going through the entire program
looking for the code you want to change. This
saves a lot of time and it helps prevent you from
accidentally changing other parts of the
program.

When you finish your program, you may want to
put it together. The problem with using
subprograms is that you will have additional
programs that are needed to use your program.
If you give someone your program you will have
to give them your subprograms as well. So, if a
subprogram is only used once then you should
put it in your parent program. All you have to do
is paste the code from the subprogram in place
of the program call.

How to Create a Subprogram:
 1. Take the code from the parent program
 and put it in a new program
 2. Put a Return command whenever you
 want to return to the parent program (a
 Return command isn�t needed at the end
 of a subprogram)
How to Call a Subprogram:
 1. Place the cursor in your main program
 where you want the program to run
 2. Put the prgm command on the line
 3. Select the program you want from the
 program list and press ENTER to put it
 into your program
Hints:
 1. Subprograms should be named Zparentn,
 where parent is the name of the parent
 program and n is the number (if you have
 more than one).
 2. All variables are global; variables used by
 one program can be used by another.
 3. Labels are local; you can�t use Goto in one
 program to jump to a Lbl in another
 program.

Example:
 PROGRAM:ENTER
 ClrHome
 Repeat K=105
 Output(1,1,�Press Enter!
 getKey
 If Ans=105
 prgmZENTER
 End

 PROGRAM:ZENTER
 Pause �U Pressed 105
 ClrHome
 Return

Matrices [A]-[J]
Matrices are two-dimensional lists (row x
column). They are used for holding lots of
information. There are ten built-in matrices
([A]-[J]). A matrix may have up to 99 rows or
columns (depending on available memory).
There are several commands that you can use
with matrices.

Hints:
 1. Matrices are often used for setting up a
 map and checking hit detection.
 2. Matrices use more memory than lists or
 strings, so use them instead, if possible.
 3. Comparing elements in a matrix isn�t
 very fast, so store the elements to
 variables if you are going use them a lot.

Types: dim, Fill, randM, augment, T

dim: Used to find the dimensions of a matrix.
You can create a matrix by saying how many
rows and columns you want and storing it as a
matrix. When you first create a matrix all of the
elements are zeros. You can also use it to
redimension an existing matrix. The elements
in the old matrix that are within the new matrix
are not changed. The extra elements are filled
by zeros. Elements in the old matrix that are
outside the new dimensions are deleted.

Example:
 {3,4!dim([A]

Fill: Replaces each element in the matrix with
the specified value.

Example:
 Fill(5,[A]

randM: Creates a random matrix of integers.
The seed value stored to rand controls the
values of the integers. The default is between
negative and positive nine.

Example:
 randM(3,4![A]

augment: Appends one matrix to another as
new columns. Both matrices must have the
same number of rows.

Example:
 augment([A],[B]

T: Returns a matrix in which each element
(row, column) is swapped with the
corresponding element (column, row) of the
matrix.

Example:
 [A]T

TI-BASIC REFERENCE CARD v1.0 4 ©2005 Steve Hartmann

