TI-83 Basic Programming Optimization Tips

By Alexander Weissman

A Flabberghast Software Effort

If you recall, in Lesson 2 we discussed a simple way to use a conditional expression in a formula to output a number based on which string was inputted. This formula took the string inputted, and returned the value 1 for “HELLO”, 2 for “GOODBYE”, and 0 for anything else. We then discussed how to construct any formula of the form C1(condition1) + C2(condition2) + C3(condition3) +…+ Cn(conditionn), where each coefficient Cn represents the value to be returned if condition n is true. However, there are some cases where we don’t want to return a number from a string, but perhaps a number from another number, or a string from a number. Additionally, rather than a return value, we might want some other commands performed when a condition is true. We will first discuss a new way to write an If-Then statement and its applications. In section B, you will learn how to return a character or string based on a number (The reverse of what we did in Lesson 2).
Lesson 3: Advanced Condition-Expressions and String Manipulation

A. Another way to write an If-Then statement

Consider what an If-Then statement does – it checks the argument of ‘If’, and if the argument is a nonzero number, it executes all the subsequent commands up to ‘End’. The ‘For()’ loop also executes statements conditionally. It continually executes a group of statements until its first argument has a value greater than the third argument. While this is meant to iterate more than once, it can be forced to iterate one or zero times, based on a conditional expression as its third argument.

For(I, 1, A=5

Statements

End

The For() loop starts I off at 1, and executes the subsequent statements (and increments I) until I is greater than the third argument. The result – If A=5, the third argument will evaluate to 1 and I will only be greater than 1 after an iteration. If A≠ 5, I will immediately be greater than 0, and the statements will not be executed at all. And what is a block of code that iterates one or zero times, based on an argument? An If-Then statement. The problem with writing your If Then statements this way is that using a For() actually takes up more memory – 1 byte to be exact. The real space saving comes when you combine a For loop nested inside an If-Then. You can add coefficients to the conditional expression to force the For loop to iterate either zero or n times, which is the same effect as a For loop nested within an If-Then. Take a look at the following code:

If X>10

Then

For(I,0,7

Text(7I, 4I, ”*

End

End
This produces a pattern on the graph screen as long as X is greater than 10:

[image: image1.png]
We can combine the If-Then and the For by taking the ‘If-Then’ argument and multiplying it by the third argument in the For loop:

For(I,0,7(X>10)
;third argument evaluates to either 0 or 7

Text(7I, 4I, ”*

End

A little error here is that, since I starts off at 0, the code still iterates once if the condition is false (The third argument evaluates to 0 if X≤10 and 7 if X>10). To make it evaluate to one less than the starting value of I if the condition is false, we can subtract 1, and multiply the condition by one greater.

For(I,0,8(X>10)-1
;third argument evaluates to either –1 or 7

Text(7I, 4I, ”(
End

The third argument will now evaluate to either –1 or 7, based on the condition. If you count the difference in byte usage for the old way and the optimized way, you will see that we saved two bytes.

B. Manipulating strings (evil, maniacal chuckle)

Sometimes, we want to do the reverse of what we first did with the condition-expression. As you recall, we constructed a formula that would return a number based on what string was inputted. But what if we want to return a string based on a number? The solution is not so simple – there are no ways to multiply, divide, add, or subtract strings. The key here is to find a way to associate each character or group of characters with a number. How do you do this? By lining up all your strings into one big string, and accessing the first (or only) character of each string using the sub() command. To illustrate, lets take a look at a simple alphanumeric converter – it returns a letter based on its alphanumeric number (A is 1, B is 2, etc.). First, lets consider all our possible return values: A-Z. Lining these up into one big string called Str2, we get

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”(Str2

To have a letter returned to ‘Str1’ based on its alphanumeric position A, we simply write a sub() statement:

“ABCDEFGHIJKLMNOPQRSTUVWXYZ”(Str2

sub(Str2, A, 1)(Str1

;returns 1 character, starting with the letter at position A

Sometimes you will have to calibrate either the string or the formula, as we will see in this example:

Input A

“HELLOGOODBYEYESNOGET LOSTOK”(Str2
Here, we want it to say HELLO for a value of 1, GOODBYE for a value of 2, YES for 3, NO for 4, GET LOST for 5, and OK for 6. First, none of these strings start at position A. Secondly, they have different lengths. To have the sub() start at the proper place, we create a condition-expression that returns the starting position of any string based on its label A. One way would be to write it out in the C1(condition1) + C2(condition2) + C3(condition3) +…+ Cn(conditionn) form. However, it would be more efficient to create a list of numbers, where each element’s value represents the starting position of the string that corresponds to its index value. To illustrate:

123456789012345678901234567

HELLOGOODBYEYESNOGET LOSTOK

HELLO starts at 1, GOODBYE starts at 6, YES starts at 13, NO starts at 16, GET LOST starts at 18, and OK starts at 26. We can store each of these values into L1 as such:

{1,6,13,16,18,26}(L1
Now we must deal with the length problem. Well, quite conveniently, the length of any particular string who’s starting position is marked by L1(A) is equal to L1(A+1)- L1(A). That covers everything except the last string, for which there is no L1(A+1). Therefore, it is a good idea to mark the position of an imaginary character immediately after the last character in the string. In this case, it would be 28, so we rewrite our L1 like this:

{1,6,13,16,18,26,28}(L1
There. Now, to access any string marked A, we simply use L1(A) as the second argument in sub(), and L1(A+1)- L1(A) as the third argument. Our code now looks like this:

Input A

“HELLOGOODBYEYESNOGET LOSTOK”(Str2

{1,6,13,16,18,26,28}(L1

sub(Str2, L1(A), L1(A+1)- L1(A))(Str1

You will also want to DelVar L1 and Str2 at the end of the program. The problem with using this with strings of different lengths is that it only takes up less space when you have 6 or more strings to deal with, and it runs much more slowly than a sequence of If statements. Therefore, I recommend only using this when you want to return single characters, or when you have a large number of strings to deal with (random joke program?)

An interesting single-character application is the Zealot ZSUB routine ZTXTTYPE, a program that allows you to input strings from the graph screen (the calculator only supports home screen prompting). Part of the program combines both string manipulation and condition-expressions to return a character based on the code of the key pressed ([Y=] is 11, [WINDOW] is 12, [2nd] is 21, [ALPHA] is 31, etc.). First, I defined a list of characters to be returned for each string starting with key 41 (the key who’s ALPHA version is ‘A’). I gave any key that did not have an alpha value a default value of ‘X’.

"ABCeXDEFGHIJKLMNOPQRSTUVWXYZθ+X X? ¤ "(Str1
Here, ¤ represents a special flagging symbol I used to represent someone pressing enter. The problem here is that the first character is not at position 41, but rather position 1. Additionally, the keys don’t have codes 41 42 43 44 45 46 47 48 49 50 51…, but rather codes 41 42 43 44 45 51 52 53 54 55 61…; therefore we must add something that compensates for this. If D is the getkey code, we write this conversion formula:

(D-45-(5(int((D-50)/10))))

If this confuses you, don’t worry – just know that its purpose is to convert any getkey code between 41 and 105 to its alphanumeric correspondent. Note that getkey codes below 41 (35 and below) will give us a garbage value. Therefore, we have it return a 0 if the getkey code is less than or equal to 41 by multiplying it by (D>35).

(D-45-(5(int((D-50)/10)))) (D>35)

Just for fun, we can give codes below 41 a default value by adding 26(D≤35). In our string, 26 is the position of character ‘X’, so we have made it print an X if any key below 41 is pressed:

(D-45-(5(int((D-50)/10)))) (D>35)+ 26(D≤35)(H

Where H represents the position of the character in Str1. Accessing this character is simply a matter of calling sub(Str2,H,1). Later in the program, special routines are added to handle what happens when someone presses enter.

C. Thanks!

Thanks for reading TI-83 Programming Optimization Techniques Lesson 3! If you found this useful, and are interested in future lessons, please let us know.

flabberghast@techie.com
Or visit our web page: http://www.flabberghast.xs3.com/
�

