TI-83 Basic Programming Optimization Tips

By Alexander Weissman

A Flabberghast Software Effort

In Lesson 1, we discussed some minor changes you can make to your programs to make your programs smaller or faster. These were all matters of removing code that does not affect the program, or using the special Ans variable instead of the standard variables. However, these types of changes are only skin-deep, so to speak. This lesson will teach you how to completely change your approach to programming in order to create more concise code. The first thing that will be discussed is simulated functions, and their advantages and disadvantages. Following will be an introduction to the expression-condition, and a sample of its myriad applications. The expression-condition topic will lead into Lesson 3, which will cover more mathematics-based programming techniques. Lesson 3 will also explain how and when strings can be manipulated for optimization purposes.

Lesson 2: Simulated Functions and the Expression-Condition

A. The Simulated Function

That’s simulated, not stimulated. If you have ever programmed in a compiled language – a language which is completely converted to machine code before it is run – you may be familiar with the concept of a function. Basically, a function is a unit of code that appears outside of the main body of the code. It is executed by a calling command that contains arguments, or values to be used in the function for certain variables. After execution, the function either produces an I/O result, or it returns some value(s) to the main program. Consider a function in C, for example. In C, you are required to define the data type (integer, floating point, character) of a function’s return value and the types of the arguments:

int A=6, B;

/* In C, all variables must be declared before they are used. ‘int’

 makes the variables integers */

B=is_even(A);

/* Executes the is_even function, using the value of A as its

 argument and returning the result to B */

int is_even(int A){
/* A function called is_even, which takes an integer, and returns

 0 if the number is odd and 1 if it is even.
*/

 return ((A%2)==0)
/* The ‘%’ determines the remainder of A when it is divided by 2.

 If the remainder is 0, it is even, and if it is 1, it is odd. The

 ==0 part tests the remainder against 0, thus inverting its value to

 0 if its odd and 1 if its even.

 ‘return’ passes the result back to the main program. */

}

Note that the A variable in the main code is independent of the A variable in the function. Changing A in the main code will not affect the A in the function, and vice-versa. Thus, when is_even is called, we really only copy the value of A in the main code to the A in the function – any changes the function makes to A will not be passed back to the main.

In TI-BASIC, we don’t have real functions, arguments, or return values. What we do have is subroutines. The problem with subroutines is that arguments cannot be passed to them, like you can in C. Note, however, that all variables and lists used in any TI program are global to the entire calculator. This means that changing any variable in any program affects the variable everywhere else. We can twist this fact to our evil purposes, of course. Lets start by writing the is_even function as a subroutine named ISEVEN (we will learn how to optimize this code later):

If int(A/2)=(A/2)

;If the integer portion is the entire number

Then

;Then

1(B

;Assign 1 to B

Else

;Otherwise

0(B

;Assign 0 to B

End

;End If-Then
Then, when we want to use the function to test a number, we simply store a value to A, and call the subroutine:

;Tests the number ‘1792467014’ to see if it is even

1792467014(A

;our argument

prgmISEVEN

;calls the subroutine

;We can now use ‘B’ with the rest of the program
The problem with this scheme is portability – you may design your program so that it reserves A and B for this purpose, but someone else wanting to use your function won’t know that. You could specify in documentation that A and B are reserved, but that just complicates matters. A better way is to use a reserved list (a list that no other program would possibly want to change) for the arguments and return values. In this case, we use a list name “GHD”.

If int(LGHD(1)/2)=(LGHD(1)/2)

;If the integer portion is the entire number

Then

;Then

1(LGHD(2)

;Assign 1 to LGHD(2)

Else

;Otherwise

0(LGHD(2)

;Assign 0 to LGHD(2)

End

;End If-Then
Then, we can call the function as follows:

;Tests the number ‘1792467014’ to see if it is even

2(dim(LGHD)

;makes GHD have two elements

1792467014(LGHD(1)
;our argument

prgmISEVEN

;calls the subroutine

We can now use ‘LGHD(2)’ with the rest of the program and not worry about any other program using it. At the end of the program, we can add DelVar LGHD to blow off our temporary list.

This makes the function portable, but all those references to ‘LGHD’ tend to take up space. A reference to LGHD takes up at least 7 bytes, while a reference to A or B takes only one byte. We can solve this by using a regular variable, and saving its previous value into our list until the end of the function:

A(LGHD(3)

;saves the original values of A and B

B(LGHD(4)

LGHD(1)(A

;Copys our argument to normal vars

If int(A/2)=(A/2)

;If the integer portion is the entire number

Then

;Then

1(B

;Assign 1 to B

Else

;Otherwise

0(B

;Assign 0 to B

End

;End If-Then

B(LGHD(2)

;Puts the result back in the list

LGHD(3)(A

;Restores the original values of A and B

LGHD(4)(B
We can now call the function as we did last time. Take a look at this flowchart to see what is going on during execution:

In the beginning…

Then, we define our argument:

Then, we call the function, and it saves the original values of A and B:

Now, we can copy our argument to a nice, easy-to-use variable:

Then we use the nice variables in our function:

Now we copy our return value to the list:

And restore the values of A and B:

We now have LGHD(2) to do with as we please – and as far as the program is concerned, A and B never changed!

In the above example, the memory saved by saving and recalling outweighed the memory saved by using less memory-intensive variable names. However, in larger functions, you will notice that it does indeed save space.

*Note that if your function does not return any value, you can add the ‘Delvar LGHD’ command to the end of your function and free up the space that the list takes up.

But, what does this have to do with optimization? Well, consider that many of your programs use the same pieces of code over and over, with only a minor difference in some of the values. These values can be the arguments in a function! Thus, instead of the same pieces of code over and over again, you only have the code appear once in a function, and then short commands to call the functions from your main code. It saves a lot of space when you use the function over and over. Another advantage of simulated functions is that, when written properly, they can be shared among your programs. You could even distribute the simulated function among other people, along with instructions about what arguments to provide and what the return value is saved as. The disadvantage with simulated functions is that they do require some extra time to copy all the values, and so can make a program run marginally slower.

B. The Expression-Condition

Consider what happens when the BASIC interpreter goes through an ‘If’ statement. First, it evaluates whatever is after the ‘If’. If the expression after ‘If’ is a nonzero number, it executes the commands below it until it reaches the End line (or just the next line if no ‘Then’ is present). If the expression evaluates to 0, it skips everything until the ‘End’ statement (or just skips the next line if no ‘Then’ is present). So how does this relate to the comparison signs after ‘If’? Well, it turns out that it evaluates the expression containing the comparison signs just like any other expression. For example:

3(A

If (A=3)

…

The calculator evaluates ‘A=3’, which is true. Thus, it returns 1, which tells the If statement to continue execution on the following lines. If we replaced ‘A=3’ with ‘A>2’, the calculator would evaluate that to 1 as well. However, ‘A≥4’ would evaluate to 0, because A is not greater than or equal to 4. These expressions containing the comparison operators (=,≠,<,≤,>,≥) can be used in anything calling for an expression. We could, for example, store the evaluation of a conditional statement to a variable.

12(A

(A=12)(B

;B gets the value 1

We can put conditional expressions into calculations, too.

5(A=12)+7(B
;If A=12, B gets the value 12, otherwise it gets the value 0

Here’s my point: in a case where you are testing a value to determine some other value, you can use the conditional expression directly instead of testing the condition and having it branch. For example, suppose you have a block of code that returns a certain value when you type in a certain word. Lets say you want it to return the number 1 to a variable S if you type “HELLO”, the number 2 if you type “GOODBYE”, and the number 0 if you type anything else. Here is how you would code that traditionally (keeping Lesson 1 tips in mind):

Input Str1

;Input the word and store it to Str1

0(S

;Makes the default value 0

If Str1=”HELLO
;Test HELLO

1(S

;If HELLO, store 1 to S

If Str1=”GOODBYE
;Test GOODBYE

2(S

;If GOODBYE, store 2 to S

This would produce the desired results, although somewhat inefficiently. To improve efficiency, we can notice that only one of the conditions can be true at any time. Lets take a look at just the conditions, storing their values sequentially to a variable S:

Input Str1

Str1=”HELLO”(S

;The ending quote is required in this case

(Str1=”GOODBYE”)(S
;Same here, although the parentheses are optional

The problem here is that S is calculated twice. If none of the conditions are true, we get 0. But what if one of them is true? Well, if the second condition is true, the first line will store 0 to S, and the second line will overwrite S with 1. However, the overwriting works both ways. Suppose the first one is true, and the second one is false. 1 will be stored to S, and then be overwritten by the second line with a 0. This is NOT what we wanted! The solution is to combine the two lines into one calculation of S. The easiest way is to add the two conditions.

Input Str1

(Str1=”HELLO”) + (Str1=”GOODBYE”)(S
;All in one line

Since only one of the terms can be true, either all the terms will evaluate to 0, or one of the terms will evaluate to 1. In this case, if both are false, we get (0 + 0) for S, and either (1 + 0) or (0 + 1) if one of the terms is true. The only problem left to take care of is that if either condition is true, we get the same value, 1. So how do we tell which string was typed in? Well, we can put a coefficient in front of the term that we want to have a different value.

Input Str1

(Str1=”HELLO”) + 2(Str1=”GOODBYE”)(S
;Note the 2 before the second term

Now the line will evaluate like this:

	(Str1=”HELLO”)
	(Str1=”GOODBYE”)
	Evaluation

	False
	False
	0 + 2(0) = 0

	True
	False
	1 + 2(0) = 1

	False
	True
	0 + 2(1) = 2

 You can do this, by the way, for any number of conditions. Just keep adding your conditional terms, using a different coefficient in front of each one.

How does this relate to our discussion of optimization, you ask? Well, take a look at the number of bytes each method requires. Our traditional – style program takes 46 bytes, while the new version takes up only 41. 5 bytes, big whoop. However, note that the more conditions, the more pronounced the space saving is. Lets break down the byte usage for each conditional term:

If

1 byte

Str1=”

4 bytes

String

x bytes, depending on the length of the string

N(S

2 bytes, plus 1 for each digit of N

This gives us a total of 7+x+n for any string and any number of digits in the number to assign to S.

Now lets look at the byte usage for the second version:

… +N(Str1=”

6 bytes, plus 1 for each digit of N

String

x bytes, depending on the length of the string

“)

2 bytes

This gives us a total of 8+x+n bytes for any number of digits and any N.

Upon first glance, it appears that the second version actually takes the larger amount of space. Not so - it turns out that every command-beginning symbol ‘:’ takes up a byte. Our If-statement version requires two command-begin symbols for each condition, while the second version needs only 1 for the whole expression, no matter how many conditions there are. If you have 8 conditions to test, for example, you would save 11 bytes. Still not impressed? Consider the relatively limited amount of memory on the TI-83, and the number of times one might use this type of optimization in a program. This could save you hundreds of bytes in a large game, especially when combined with previously mentioned optimization techniques.

This mathematical approach to programming optimizes our code quite nicely; however, there are other ways to use mathematical methods to shrink code even more. These methods will be discussed in the next lesson: Advanced Mathematical and String Manipulation Optimization Techniques.

C. Challenges

1. Write a simulated function that calculates the largest of three values. Make sure it preserves any variables it uses. Determine whether short-named variables (A-θ) or using list referencing saves more memory, and write it accordingly.

2. Write a program that lets you use the arrow keys to move a pixel around the screen without using an ‘If’ statement. Use the methods described in section B.

3. Write a simulated function (section A) called ALPHA, which is passed a string containing a single letter and returns its alphanumeric value (A is 1, B is 2, etc.) Use the optimization methods covered in section B.

D. Thanks!

Thanks for reading TI-83 Optimization Tips and Tricks Lesson 2! If you found this useful, and are interested in future lessons, please let us know.

flabberghast@techie.com
Or visit our web page: http://www.flabberghast.xs3.com/
A

57

B

14

LGHD(1)

0

LGHD(2)

0

LGHD(4)

0

LGHD(3)

0

LGHD(3)

0

LGHD(4)

0

LGHD(2)

0

LGHD(1)

1792467014

B

14

A

57

LGHD(3)

57

LGHD(4)

14

LGHD(2)

0

LGHD(1)

1792467014

B

14

A

57

LGHD(3)

57

LGHD(4)

14

LGHD(2)

0

LGHD(1)

1792467014

B

14

A

1792467014

LGHD(3)

57

LGHD(4)

14

LGHD(2)

0

LGHD(1)

1792467014

B

1

A

1792467014

LGHD(3)

57

LGHD(4)

14

LGHD(2)

1

LGHD(1)

1792467014

B

1

A

1792467014

LGHD(3)

57

LGHD(4)

14

LGHD(2)

1

LGHD(1)

1792467014

B

14

A

57

