CALCnet>* : A Robust, High-Speed Network
Protocol for Two-Wire Devices
Christopher Mitchell

Abstract

While devices and machines with clock cycles to spare have evolved to harness increasingly-complex
network protocols, especially the widespread IEEE 802.3 (Ethernet) and IEEE 802.11 (WiFi) families of
specifications, less-powerful devices have historically engaged in only limited two-unit communication.
A particularly unfortunate example is Tl graphing calculators. This ubiquitous, relatively-inexpensive
computing platform is owned by millions of high-school and college-aged students around the world,
but only natively supports a two-unit transfer mechanism. Built around a z80 microprocessor executing
at 6MHz or 15MHz, it is incapable of participating in modern networks, but has sufficient computation
power to support a robust network tailored to its strengths and weaknesses. CALCnet>? presents such a
protocol, boasting point-to-point and point-to-multipoint communication, asynchronous tranceptions, failure
resistance, robustness against noisy channels, and many other features of a reliable and extensible network
protocol. The implementation is small, fitting into under 1KB of z80 assembly code, and is shown to perform
with superior reliability and at comparable speeds than even existing two-unit transfer protocols.

+

1 INTRODUCTION

CALCnet*? offers a robust, asynchronous end-to-end transport protocol capable of dynamic,
stateless network topology reconfiguration, error detection and recovery, and full network fea-
tures such as arbitrary simultaneous disjoint communication. It supports one-to-one directed
transmissions and one-to-many broadcasts to support as wide a set of applications as possible,
and is targeted at utilities, chat programs, file-transfer programs, conference applications, and
especially multiplayer and massively-multiplayer gaming on TI graphing calculators. As of
this publication, the CALCnet?? protocol has been written into Doors CS 7.1, a shell and GUI
developed for calculators by the author. It can be used on TI-83+, TI-83+ Silver Edition, TI-84+,
and TI-84+ Silver Edition graphing calculators, as well as via the TI-84+ emulator on the TI-nspire
calculator. This document presents first the motivation and existing alternatives, then the frame-
level, byte-level, and bit-level protocol as well as the steps and caveats in implementing CALC-
net in new programs, and finishes with a survey of performance, branding, and future work. The
latest information on CALCnet and Doors CS can be found at http://www.cemetech.net; Doors
CS-specific downloads and information, including its SDK, are at http://dcs.cemetech.net.

2 MOTIVATION AND EXISTING ALTERNATIVES

CALCnet*? was motivated by the author’s desire to make calculators do more. The hardware
is relatively inexpensive, and due to its requirement by the vast majority of modern secondary
math and science education programs, very widespread. TI graphing calculators are reasonably

Cemetech Technical Report #4
W (c) 2003-2010 Christopher Mitchell
September 16, 2010

http://www.cemetech.net
http://dcs.cemetech.net

powerful, with a microprocessor, memory, LCD, and serial communication port all sufficient
for high-functioning software, which have been used to make a wide variety of programs and
games over the years. Although hardware modications and peripherals for the devices have
also been explored, much less development effort has been devoted to this area because of the
additional skill, cost, and risk associated with hardware additions and modifications.
CALCnet*? is the culmination of close to eight years of brainstorming and effort devoted
to developing a feasible, fast, small, and inexpensive solution for linking multiple calculators
together. The operating system (the TI-OS) that ships with each TI-83+, TI-83+ Silver Edition,
TI-84+, and TI-84+ Silver Edition contains a unit-to-unit linking protocol that allows programs
and other variables to be send between two devices directly connected by a two-wire serial
link cable. However, the official protocol does not include any provisions for linking more than
two devices simultaneously[4]. In addition, the protocol is poorly-suited for gaming and other
high-performance applications. Two community alternatives have been created, TachyonLink by
Michael Vincent[8] and BELL by Tim “Timendus” Franssen[2]. A third alternative called CLAP,
also by Franssen[3], is the only other well-known protocol to offer multi-calculator linking.
Finally, two I?C implementations for calculators, one my Mr. Vincent[7] and one by O. Suominen
and V. Crabb[6], can be used for multi-calculator linking but have not been widely disseminated.

2.1 Existing Link Protocols

The TI-OS linking protocol can only reliably allow two calculators (or a calculator and a pe-
ripheral or host device) to be connected[4]. Its speeds are disputed, reported by one source
as 45 to 50 kilobits per second (kbps), and by another as around 15kbps[5]. A third reputable
source estimates the TI-OS linking speed at about 8kbps or 1KBps[1]. It is severely limited
for authors of third-party software who wish to harness communications between multiple
calculators, and to this end, three community projects have been published before the completion
of CALCnet*? . Michael Vincent’s TachyonLink is targeted at game development, and offers a
synchronous transmission protocol that is reported to achieve transfer rates up to 4.3 kilobytes
per seconds (4.3KBps or 35.4kbps)[8]. As of this publication, no applications or programs can
be found that make use of TachyonLink for performance comparison. A similar protocol called
Binary data Exchange Link Library, or BELL, was coded by Timendus, né Tim Franssen. It offers
similar operation to TachyonLink, including synchronous (blocking) operation and transmission
of multi-byte chunks of data. Its documentation reports top speeds of around 10.66kbps or
1.33KBps, but does not provide any data integrity or parity checkingl[Z2].

Two implementations of the Inter-Integrated Circuit protocol, commonly abbreviated I>C, have
been written for TI graphing calculators. The first, created for the TI-85 and ported to the TI-
83, was created by Messrs. Suominen and Crabb[6]. It implements the basic I°C protocol as
well as a networking layer called “MBus” on top to facilitate use for calculator networking.
MBus uses I2C addresses, which are limited to an 8-bit or 10-bit address space, and must be
negotiated at connection time by each calculator by picking a random address, pinging it, and
then claiming that address if no response is received. I°C has a special broadcast address that can
be used to send to all devices on the bus at once, although MBus does not implement broadcast
compatibility[6]. The MBus protocol’s frames are surprisingly similar to CALCnet*? ’s, with
the exception that it defines a “protocol” byte in each frame falling into categories like games,
chat programes, file transfer programs, network utilities, raw data, and testing applications. Each
MBus program is designed to use a unique protocol byte, theoretically limiting the protocol to
180 unique programs or applications that utilize its capabilities[6]. The end of the MBus readme
and documentation makes a surprising legal point about the use of I?C: it may be contrary to the
original Philips I?C license to operate an I?C bus without any Philips integrated circuits present
on the bus. The second I?C implementation was written by Mr. Vincent for his spectrum analyzer

project[7]. No in-depth documentation of his libraries are available, but they are presumed to
provide basic I?C functionality without an additional calculator-specific layer.

The only alternative networking protocol to CALCnet*? currently available not built on I?C is
Mr. Franssen’s Calculator Linking Alternative Protocol, or CLAP[3]. The protocol offers networks
as small as two and as large as 255 calculators. Each network is required to have a calculator
that acts as a master, assigning addresses to other calculators joining the network, while all other
calculators act as slaves. It contains provisions for assigning a new master if the current master
leaves a network. No information has been published on its performance or throughput. It is
believed that CALCnet*? represents a significant advancement in the state of the art of calculator
networking. It offers the following improvements:

o A decentralized, true peered network in which each calculator is responsible only for its
own communication. No calculator need hold an exhaustive table or register of network
members outside of its application’s needs.

o A reliable communication model, ensuring accurate transmission even over an inhospitable
or noisy network, at the bit level, the byte level, and the frame level. Collision detection,
backoff, and other techniques from existing network architectures are used to effect failure
detection and recovery.

o An arbitrarily-large address space sufficient to simultaneously encompass all currently-
manufactured TI-83+ through TI-84+ Silver Edition graphing calculators, but contributing
no statistically-significant reduction in network burst capacity.

o The ability to conduct one-to-one directed transmissions or one-to-many broadcasts within
the same network framework.

« Asynchronous transmission and reception of data requiring no intervention from the host
user program, allowing the program to read and write the send and receive buffers at its
convenience.

2.2 Electronic System

To understand the protocol that CALCnet*? represents, it is necessary to understand that elec-
tronic systems available for inter-calculator communication. Every z80 graphing calculator has a
two-wire link port, that is, two signal lines and a ground. These two lines may each represent a
binary bit, a logical one represented by electrical ground or 0 volts and a logical zero represented
by 5 volts, as per convention. Each line floats at 5v and can be pulled low by any calculator. If
one calculator pulls a line low, it is pulled low for all calculators, and only when all calculators
have released that line does it float high on every calculator. These two lines can be respectively
termed tip and ring from their positions on a 2.5mm stereo phono plug, but in CALCnet are
called the clock and data lines. In the canonical CALCnet*? implementation, the data line of every
calculator is connected to every other calculators” data line, all the clock lines are tied together,
and all calculators share a common ground.

Therefore, no special hardware is required in order to set up a CALCnet network. Future
designs for network extenders or boosters, CALCnet*? over Internet (global CALCnet) adapters,
and wireless modules may be constructed, but the simplest type of CALCnet network involves
simply splicing link cords together. Figure [1| shows a seven-calculator network with six of the
calculators connected. The circuitry on the breadboard is partly to support LED network activity
indicator and partly a microcontroller board to trace and debug the network, but none of that
peripheral circuitry is necessary for CALCnet*? itself to function.

3 PRoTOCOL DETAILS

Every byte of data carried across a CALCnet*? network is encapsulated in a frame containing the
IDs of the sender and receiver, the length of the data, and a checksum to guard against corrupt

Fig. 1. A seven calculator setup; six of the calculators have been connected to the network.

transmissions. CALCnet is designed to allow transmission over noisy or lossy channels, although
for simplicity it performs minimal error correction in favor of retransmission. The following
sections describe CALCnet*? from the top down, starting with the structure of each frame,
narrowing to the structure of each byte sent, and finishing with the timing and functionality of
transmitting a single byte.

Note that as mentioned previously, the TI link protocol follows an active-low model. Normally,
the data and clock lines (tip and ring) both float at electrical high, +5V, or logical false or zero.
When a calculator “pulls down” a line to 0V, it represents a logical true or 1. Electrically, when
one calculator pulls a line low, all other calculators” congruent lines are pulled similarly low,
but another calculator releasing the line will not return it to electrical high / logical low unless
all other calculators release that line.

3.1 Frame Structure

Every CALCnet frame is a series of 1 to 255 payload bytes sent from one calculator to another
calculator or broadcast from one calculator to every other calculator on the network. A schematic
view of the frame transmission protocol is provided in Figure IZl Every CALCnet*? frame begins
with a period of 5,000 to 15,000 6MHz cycles, or 0.8ms to 2.5ms, in which it waits to see if
anything else is sending. It starts counting up from zero to 5,000 cycles; every time it sees
activity, it resets that counter. If 15,000 cycles have passed and the counter has not yet reached
5,000, then it assumes that the network is busy, and waits until the next time the interrupt is
triggered to try sending. At any point before 15,000 cycles have passed, when 5,000 idle cycles
are seen, the protocol transitions from listening phase (1) to jamming phase (2). In phase (2), the
calculator holds the clock line of the network low at electrical ground / logical high, serving two
purposes. First, it prevents any other calculator from beginning a transmission. Secondly, the
sum of the time spent in (1) and (2) is the same as the interval between interrupts triggered 110
times a second (110Hz), so even for calculators with staggered interrupt timing, every calculator
on the network will notice the jamming and get ready to receive data. In the ideal case, after
(2) completes after a total of at least 9.8ms of (1)+(2), every other calculator in the network is
waiting for the clock or data line to start to fluctuate, indicating the beginning of the frame’s

real contents.

L]

1]
=
G
Sk-15K 55K oy ﬂ-- .
- Rl s AT
8-2.5ms - 9ms 5 bytes 5byfes mec S2 ME MENAK
1 7 F{ecx;r D SEHT 1D F;:% R §g é“% 9
' 2y £ =
- i i
o

L
o

=]

Fig. 2. Frame-level transmission protocol, including network acquisition guard, transmission of
metadata and payload, and reception and confirmation of the checksum. (1) monitor the network
for other transmissions to ensure that the network is idle; (2) hold the clock line low for the length
of one 110Hz interrupt to acquire the network; (3) transmit the receiver’s ID, or 000000 for a
broadcast; (4) transmit the sender’s ID; (5) transmit the data length; (6)(7) transmit the payload
and its 2-byte checksum; (8) wait for a checksum from the receiver; (9) ack or nak the received
checksum.

First, five bytes are send, containing the recipient calculator’s ID. There are two special values:
AAARRA represents the gCn bridge on the network, if present, while 000000 denotes a broadcast
transmission that should be received by all calculators on the network. The recipient ID is
placed first in a frame so that every calculator can immediately stop receiving and resume
normal execution if the frame is not intended for them. Next are five bytes of transmitter ID;
the only special value is AARAAA for a transmission from a gCn bridge. Note that the special
value of AAAAAA is merely a convention for ease of finding the bridge, and may be changed
or supplemented in real-world CALCnet*? usage. Next is a two-byte payload length field.
Unfortunately, because of buffer size, CALCnet*? should be restricted to a maximum payload
length of 255 bytes, but future versions may allow larger frames. Next are the actual payload
bytes, between 1 and 255, in stage (6). Stage (6) is a simple two-byte modulus checksum of all the
bytes in the payload only. The receiver should be summing the incoming bytes in parallel with
their reception so that when the last byte is received from the transmitter, it can immediately
send back the checksum it calculated. The transmitting calculator then ACKs the checksum with
the one-byte value $AA, or may choose to either NAK with a different value or immediately
stop transmitting, triggering a timeout on the receiver. Any NAK should invalidate the frame.

Note that broadcast frames do not follow the checksum/checksum/ACK-NAK convention.
After the transmitter sends its checksum, the frame is complete, and receivers are solely respon-
sible for checking the checksum and validating or invalidating the received data. A valid set of
data received is indicated in the buffer with the high bit of the most significant byte of the data
length set. If that bit is not set, there is no valid data available. Similarly, a calculator may only
begin receiving if that bit is reset, so after a calculator program reads data out of the buffer, it

is responsible for resetting this bit so that further data may be received.

3.2 Byte-Level Protocol

The byte-level protocol is shown in Figure 3| Every byte starts with a 312-cycle stage (1) (still 6
MHz cycles, so 52115) in which the calculator pauses to allow any receiving calculator to catch up,
add the previously-received byte to the stored checksum, and perform other quick management
tasks. It then listens to the network for an additional 660 cycles, or 110us, to ensure that no
collision occur. If any link activity is seen during this period, as indicated by the data or clock
line transitioning to logical high / electrical low, a collision is assumed to have occurred, and
the frame is immediately aborted. The calculator will then proceed to jam the network for 3,780
cycles, or 630us, to ensure that all calculators see the collision condition, whether receiving or
transmitting, and cease activity so that the network can recover. If no collisions are seen in stage
(2), the transmitting calculator then holds both the clock and data lines low (at electrical ground
/ logical high) in stage (3) for another 525 to signal the start of this byte. It follows with another
4315 period with both lines released, stage (4), to guarantee sychronicity, then transmits eight
bytes in quick succession as per the bit-level protocol. An important note: although to function
correctly, the routine that CALCnet*? implements to transmit reverses the byte to be sent, the
most significant bit (MSB) of the byte is sent first, and the LSB last. No ending guard is provided
to mark the end of the byte, as the provisions of the bit-level protocol are sufficient. As explained
in the following section, bits to be transmitted are inverted before being sent, so a 1 bit is sent
as electrical high, by releasing the data line, and a 0 bit is sent as an electrical low, by pulling
the data line low.

(=]

Data

312 cyc ‘660 oyc' 312 oy 260 oyc
52us 110us 52us 43us =
~2600 cyc

1 2 3 il ~500us

Fig. 3. Byte-level transmission protocol, including (1) and (2) a time to synchronize and allow for
client computation; (3) a 52us guard marking the beginning of the byte; (4) a second 43us guard
for synchronization; and (5) the 8 bits of the byte.

3.3 Bit-Level Protocol

The bit-level protocol is fairly straightforward compared with the byte-level protocol, requiring
three stages totaling 104us; it is shown in Figure 4, This design could yield a maximum raw
throughput of 9.6kbps, but this of course is infeasible given all the synchronization, error-
proofing, and checksumming that must be performed. First, the data line is either released (for

a 1 bit) or pulled low (for a 0 bit), based on the value of the bit to be transmitted. 17,5 later, the
clock line is pulled low. As soon as the clock line pulled low, each receiver should immediately
read the data line and store the bit seen. After another 35us, the clock and data lines are both
released, and a 52us pause, denoted stage (3) above, is added to allow the receivers to rotate
the byte being received and loop to accept another bit.

L)

Data

104 cyc' 208 cyc 312 oyc
17us 3505 52 us

Fig. 4. Bit-level transmission protocol, including (1) a period with the data line set with the bit to
transmit and the clock released; (2) a period with the data line set and the clock pulled low; and
(3) a period with both the clock and data line released.

4 USING CALCNET??

CALCnet*? is designed to be relatively easy for programmers to use with minimal complications
and training, and to that end exposes only four functions to assembly programmers, two of which
need not be used in general programs. The four functions are as follows:

« Cn2_Setup: Initialize the CALCnet*? system, including starting the interrupt and setting up
the memory areas and buffers to be used by CALCnet . Once this routine has been called,
547 bytes starting as SavesScreen ($86EC) will be used by CALCnet and should not be
used other than the methods to clear buffers manually or automatically as outlined below.
In addition, the RAM segment of the CALCnet*? interrupt is stored in 42 bytes starting at
$9999 and ending at $99C3, and the jump table uses 257 bytes from $9200 to $9B01.

« Cn2_Setdown: Disabled the CALCnet*? interrupt, after which the CALCnet buffers can be
used again as normal safeRAM.

o Cn2_ClearRecBuf: Clears the receive buffer, a total of 256+5+2 = 263 bytes. In practice, the
receive buffer may be conceptually cleared as far as the interrupt is concerned simply by
resetting the MSB of the size field in the buffer, after which you may receive a new frame.

o Cn2 _ClearSendBuf: Clears the send buffer, a total of 256 + 5 + 2 = 263 bytes. In practice,
the send buffer may be conceptually cleared by the interrupt by it resetting the MSB of the
size field in the buffer, after which you may load in a new frame.

There is one additional function that CALCnet*? programs should use; because the TI-OS
interrupt that handles GetCSC is disabled while CALCnet is active, programmers should use
call Cn2_GetK instead. It will debounce the keys entered, so for non-debounced, repeating
keypresses like movement in a game, direct input should be used. Programs should also be
careful of TI-OS ROM calls (bcalls) that disable or enable interrupts, such as _RunIndicOff

and _RunIndicOn, and use alternatives for such routines. The CALCnet*? interrupt will handle
turning the calculator off and on via the [ON] key, so user programs need not provide this
functionality. Finally, be aware that during the CALCnet interrupt every calculator, regardless
of type, will be running in 6MHz mode. Programs that require 15MHz mode are recommended
not to simultaneously use 15MHz mode and CALCnet?? : although the interrupt will properly
handle transitioning to 6MHz mode for its duration and returning to 15MHz mode before the
user program resumes execution, 15MHz mode will cause the CALCnet interrupt to trigger at
275Hz instead of 110Hz, thus spending proportionally more time in the interrupt than in the
user program, and possibly nullifying the objective of 15MHz mode (ie, faster execution of the
user program).

As mentioned previously, CALCnet*? relies on the use of buffers to send and receive data.
Programs need not call any routines in order to initiate transmission or reception of data,
allowing for asynchronous, nonblocking communication. This means that a program can leave
data to be sent over the network in a buffer and continue to execute; CALCnet will handle
attempting to send the specified data until it succeeds. Similarly, the interrupt listens constantly
(technically, 110 times per second) for data to be sent to the calculator, and will store any such
data in a buffer until fetched by the userland program. Needless to say, it is important to
periodically check for received data and remove it so that CALCnet can accept another frame.
The memory areas used by CALCnet are enumerated below in Table [1, and are further discussed

in Sections 4.2] and 4.3

CALCnet” Buffer Usage
Address | Offset | Size | Function

$86EC 0 2 not for userland use

$86EE 2 5 Current calc’s ID (do not modify)
S86F3 7 5 Receive buffer sender ID

$86F8 12 2 Receive buffer size word

S$S86FA 14 256 | Receive buffer

$87FA 270 5 Send buffer receiver ID
$S8TFF 275 2 Send buffer size word
$8801 277 256 | Send buffer
$8901 533 14 not for userland use
TABLE 1
CALCnet?? uses a 547-byte chunk of memory for its temporary storage and buffers. User
programs should interact with the receive buffer and send buffer via direct memory access.

It has been shown that these sets of functions and features are sufficient to create a large set
of network-aware games and applications. A screenshot of a sample application that has been
released called NetPong v1.0 can be seen below in Figure

I & & &

Leadind1itan LeftLeadindikan LeftLeadinditan Trailinditan

Fig. 5. NetPong game demonstrating four-calculator gaming over CALCnet?2 .

It has been found that there are several TI-OS related caveats of which to be aware when using
CALCnet*? . All such caveats are due to the interactions between the TI-OS and user interrupts

OO NI WDN -

(Interrupt Mode 2 ISRs, such as CALCnet). It has been found that certain TI-OS bcalls, especially
those that potentially interact with the LCD, maybe improperly disable interrupts including the
CALCnet ISR. Known culprits including _vputs and _vputmap, but other ROM calls are likely
to cause problems. It is strongly recommended that programs that using the CALCnet*? ISR
re-enable interrupts via ei after one or more of such calls. If there are sections of your code
that may or may not have interrupts enabled, the following construction may be used (thanks
to Brenden “Calc84Maniac” Fletcher for his assistance):

;begin protected section

XOor a

push af
pop af

Id a,i

jp pe,sectionbody

dec sp

dec sp

pop af

add a,a

jt z,sectionbody

Xor a

sectionbody :

push af
;di ;uncomment if interrupts should be disabled here
m——— code that may have disable interrupts or
————— need interrupts disabled goes here
pop af

jp po,sectionend

el

sectionend :

4.1 Finding Network Members

CALCnet*? does not contain an explicit method of finding network members; the send and
receive routines were initially designed to be purely point-to-point. Programs that already know
the 5-byte address of the receiving calculator can simply fill in that address in a frame to be sent,
and the data will arrive at the receiver. However, for dynamic networks, it will be necessary
for a program to find other calculators in the network. In order to do so, each calculator can be
set to periodically broadcast its address to other calculators during a discovery phase or even
as a packet type during normal operation. Because CALCnet*? only defines at most the bottom
three layers of the OSI model (physical protocol, the data layer, and the physical layer), it is up
to each program to define the meaning of the contents of the data section of frames. However,
if a program puts a frame in its calculator’s CALCnet send buffer with a 5-byte receiver address
of 000000, CALCnet will interpret that address as indicating a broadcast frame, and will send
that frame to every calculator on the network. Note that broadcast transmission is somewhat
less reliable than point-to-point transmission. Whereas point-to-point guarantees that once the
data disappears from the sender, the receiver has successfully received and acknowledged the
data, successful transmission of a broadcast frame does not guarantee that every or even any
calculator has received the data. Repeated broadcast transmission of the broadcast packet should
offer a reasonable chance that each calculator will receive the packet, but the broadcast should
not be continually attempted to avoid monopolizing the network.

10

4.2 Sending

To send data via CALCnet*? , a calculator program must first place the receiver ID, the frame
contents, and the size of the frame to be transmitted in the associated memory areas, in that
order (see Table [I). The order is important because CALCnet notes whether a frame is pending
transmission by checking the most significant bit of the two-byte send buffer size word. Because
the z80 follows the little-endian storage model (the less significant byte of a word is stored before
the more significant byte), the most significant bit is bit 7 of the byte at $8800 (see Table [1|if the
derivation of this address is not clear). If that most significant bit is reset, the CALCnet*? interrupt
assumes that there is no frame pending transmission. Once the bit is set, CALCnet may begin
transmitting the frame at any point thereafter. Due to the asynchronous nature of interrupts,
the interrupt may fire at any time, so it is vital that the high bit of the size word must only
be set when the low size byte, receiver ID, and frame data contents have already been written.
To facilitate direct copying into the buffer from RAM or ROM via 1dir or an equivalent, the
size may be copied with the MSB unset, then the MSB of the size word’s high byte should be
set. The biggest danger of prematurely setting the bit and thus prematurely indicating to the
CALCnet interrupt that a frame is pending transmission is that a partially-complete frame may
be transmitted. Testing and verification shows that this can happen frequently under real-world
operation if the caveats dictated in this paragraph are not followed.

Once a completed frame has been placed in the send buffer, the interrupt may take a number
of seconds to transmit the given frame in the range [e, 00), in practice roughly [0.01, co) seconds.
Transmission will take a finite amount of time if the receiving calculator is on the network
and the network is sufficiently non-noisy and has low enough end-to-end latency to ensure
proper transmission. A back-of-the-envelope calculation, taking the minimum granularity of
network time as the unrealistically strict value 10us, dictates that a maximum transmission
distance based on the speed of light is 29979 meters, or 30 kilometers or 18 miles. Therefore,
any transmission over a wide-area network should be performed via an intermediary, such as
the planned global CALCnet (gCn) system. If the receiving calculator is not on the network, for
example if the receiver’s ID was incorrectly entered into the associated field in CALCnet send
buffer, then the transmission will take an infinite amount of time, as the remote calculator will
never acknowledge the packet. Transmitting calculators should provide a means of removing a
frame from the CALCnet send buffer if it has been pending for a long time and has not been
send successfully; it is up to the programmer to decide how to do this. One recommended
method follows in the code listing below:

XOor a
halt :halt to ensure that the store
l1d (8800h),a ;happens immediately after an interrupt

A program will almost definitely need to know when it is safe to load a new frame into the
CALCnet send buffer. This can be done via the same method that the interrupt itself uses, ie,
loading the byte at (8800h), masking off the most significant bit, and loading a new frame if
and only if that bit is reset (zero). One note: the MSB is not considered part of the size, so that
a size of $8002 is considered a 2-byte frame, not a 32770-byte frame.

4.3 Receiving

Receiving a packet carries similar caveats and complexities as transmission. As with transmis-
sion, there is a single bit to read and write to indicate the presence or absence of pending data.
As with transmission, there are three field in the relevant buffer: the two-byte size of the data
(for which a value of $8004 is considered a 4-byte frame, not a 32772-byte frame), the five-byte

11

ID of the sending calculator, and the 1- to 255-byte data section. As with transmission, broadcast
frames must be handled, although from the receiver side, a broadcast frame is indistinguishable
from a normal directed (point-to-point) frame. Finally, in symmetry to the transmission routine,
the user program must clear the present-data bit when it has read the data out of the receive
buffer in order to allow the CALCnet interrupt to accept another frame.

As with transmission, the memory areas relevant to receiving data and their locations and
sizes are in Table |1, The receive buffer will contain a size word indicating the size of the data
in the buffer; the data is only valid if the highest bit of the size word is set. CALCnet uses the
receive buffer to store frames currently in transit to this calculator before each frame’s checksum
is verified, so only when the high bit of the size word is set should the data be read. Once
the receive buffer is used, the CALCnet will ignore further frames transmitted to this calculator
until the receive buffer is cleared, as indicated by the high bit of the size word being reset, so
to maintain a low-latency network, the receive buffer should be checked and handled as often
as possible.

5 PERFORMANCE

While the technical details and functionality of the CALCnet*? protocol are important to its
usage, an equally significant factor is its efficiency and speed. While CALCnet*? does not surpass
existing implementations in raw speed, it achieves the same order of magnitude transfer speeds
in a network environment as existing protocols achieve for simple one-to-one transfers, while
offering many more features and increased reliability[2], [8], [1]. CALCnet offers checksumming
to ensure correct transmission, better synchronicity, collision detection, and related aspects vital
to minimize transmission error and maximize throughput in a network.

Throughput was estimated by a program written to perform both unidirectional and bidirec-
tional tests. In the unidirectional tests, one calculator takes the role of a permanent transmitter
for a large stream of data, while another acts as the permanent receiver. Constant-size frames are
transferred from the transmitter to the receiver, and are counted as received when the receiver
finishes acknowledging a frame’s checksum. In the bidirectional tests, two calculators take turns
sending equal-sized frames. In such tests, each calculator sends a frame when it has finished
receiving a frame from its partner. These tests are imperfect due to granularity and overhead, but
give a good ballpark estimate of real-world throughput ceilings. A screenshot of the program can
be seen in Figure |§] below, while a discussion of the results, including the maximum throughput
tigure of 3500 baud, are discussed in Section 5.1/ below.

C.C C.C
(CALCnety (CALCnetS)

| SFEED TEST [N SFEED TEST |

Zenk:4ED0 P R0 Zenk:yEO0 Y70
Fowd:4Z2E 4E0E Fcwd: 4SO/ Y770

Rerr Hartian & Cemekech Rerm Hartian & Cemekech

Fig. 6. SpeedTst program for performing unidirectional and bidirectional throughput tests.

Recovery from network faults, and robustness against benign or malicious network interrup-
tions were also tested and found to be sufficient for real-world situations. While for obvious
reasons CALCnet is not built to be backwards-compatible with existing point-to-point graphing
calculator transfer protocols, it is sufficiently resilient to resume communication without ant
data loss or permanent detriment following the repair of such conditions. Because it uses fixed
address space, CALCnet*? is impervious to problems of network segmentation to which the
competing protocol is susceptible[3].

12

5.1 Network Throughput

In tests, maximum speeds of 3483 bits per second transmitted were achieved in bidirectional tests
with a frame payload size of 180 bytes, as shown in Figure On either side of this maximum,
throughput decreased as frame size was lowered and raised, a result visible in Figure
and tabulated in Table Note that because the testbed program, called SpeedTst, incurs
non-negligible overhead while drawing the text for throughput statistics and copying the LCD
buffer to the LCD, the lower end of the graph and table are artificially suppressed. A similar
set of results can be seen for unidirectional testing, as tabulated in Table and graphically
displayed in Figure The maximum throughput achieved was 3220 baud (bits per second)
at a frame size of 150 payload bytes per frame, with a 180-byte frame a close second at 3141
baud. The estimated error bars on the results achieved are an estimated +5%, including human
error in timing, insufficient test length, and granularity. The skew from display overhead cannot
be accurately estimated.

4% 77 Unidirectional Throughput vs. Frame Size ™ | 4090 77" Bidirectional Throughput vs. Frame Size |
3500 3500 |]
*
= = = * ¥
3000 I <+ & 3000 B & L 4
. 2
- o - |
2500 u 2500] *
2 n L & !
£ - * 5 LI
:- 2000 :- 2000
)) m
8 L 8
£ 1500 L £ 1500 H &
| ¢ % Data Only 4 Data Only
1000 1000
B Data and Headers 'Y M Data and Headers
i L J
500 500 @
®
a 0 >
] 64 128 192 256 o 64 128 192 256
Frame Size (Bytes) Frame Size (Bytes)
(a) Unidirectional Throughput (b) Bidirectional Throughput

Fig. 7. Experimental performance of CALCnet?>? under testing in a two-calculator network. Note
that the low ends of both graphs are artificially low due to the overhead associated with rendering
speed text and updating the LCD. in a unidirectional testbed where one calculator sends a new
frame each time the receiver acknowledges each frame;[(b)|in a bidirectional testbed where each
calculator sends a new frame each time it receives one from its partner.

5.2 Collision and Fault Recovery

In tests, it was found that CALCnet?? is qualitatively robust in recovering from collisions and in-
terruptions, including intentional and malicious network sabotage. When segments of a network
are made disjoint and later reconnected, transfers resume seamlessly. In the competing protocol,
such disconnection would cause each subset of the network to reorder its address space, making
recovery impossible[3]. It was also found that injection of suboptimal network conditions such
as electrical noise, ground faults, and devices attempting to operate an incompatible protocol on
a CALCnet*? network were only sufficient to disrupt network activity for the duration of the
injection, after which transmissions resumed with no data loss. The fault-tolerance and recovery
and data integrity features of CALCnet were therefore found to be sufficient for real-world
scenarios.

6 BRANDING

In order to distinguish CALCnet*? hardware and software applications, including programs that
take advantage of its routines and capabilities, the following set of logos and guidelines have

13

been created. It is requested that if in HTML, .doc, PDEF, or other rich-text format, the manual
or readme of such programs contains one of the three scales of CALCnet*? logos from Figure
6l In addition, if possible, it would be appreciated if one of the oncalc logos in Figure
could be included in the binary of the program. In general, CALCnet*? may be referred to as
CALCnet in written documentation, as long as the first time it is mentioned it is named with
the full string “CALCnet*? ”. Notice that the first four letters of CALCnet*? and CALCnet are
capitalized, while the remaining three are lowercase (a “backronym” has been derived from the
name: Component for Asynchronous Linking of Calculators via a network).

7 FUTURE WORK

While CALCnet*? is a complete and extremely well-tested and robust protocol, there is always
room for further expansions and improvements. One possible improvement might be the addi-
tion of some packet recovery mechanism. Currently, invalid packets are simply discarded based
on the checksum acknowledgment system. However, a simple Cyclic Redundancy Check (CRC)

(a)

Unidirectional Benchmarking

Frame Bytes | Test Time (sec) | Bytes Data | Bytes Total | Bps Data | Bps Total | bps Data | bps Total
255 30.28 10455 10865 345 359 2762 2871
220 32.41 9680 10120 299 312 2389 2498
180 45 16740 17670 372 393 2976 3141
150 314 11850 12640 377 403 3019 3220
120 30.24 8160 8840 270 292 2159 2339
90 31.27 10890 12100 348 387 2786 3096
60 37 11940 13930 323 376 2582 3012
45 30.57 7875 9625 258 315 2061 2519
30 35.88 5250 7000 146 195 1171 1561
20 31.55 4400 6600 139 209 1116 1674
10 32.11 2370 4740 74 148 590 1181
5 53.51 2195 6585 41 123 328 984
1 32.73 257 2827 8 86 63 691

(b)
Bidirectional Benchmarking
Frame Bytes | Test Time (sec) | Bytes Data | Bytes Total | Bps Data | Bps Total | bps Data | bps Total

255 31.21 12240 12720 392 408 3137 3260
220 32.76 13420 14030 410 428 3277 3426
180 31.86 13140 13870 412 435 3299 3483
150 37 10500 11200 284 303 2270 2422
120 30.45 11400 12350 374 406 2995 3245
90 51.68 19170 21300 371 412 2967 3297
60 36.68 11520 13440 314 366 2513 2931
45 95.02 25425 31075 268 327 2141 2616
30 40.04 9390 12520 235 313 1876 2501
20 30.32 5460 8190 180 270 1441 2161
10 30.53 3310 6620 108 217 867 1735
5 30.73 1995 5985 65 195 519 1558
1 41.72 539 5929 13 142 103 1137
TABLE 2

Detailed CALCnet?? benchmarks for unidirectional and bidirectional transfers, as shown
graphically in Figure [5.1] [(@)| Unidirectional tests, in which one calculator functions as the
transmitter and another as the receiver;|(b) Bidirectional tests, in which calculators take turns
being the transmitter and receiver.

14

(EHLEnetEE'E

LCnet™
(CALCnet;

(a) Caption of subfigure 1 (b) Caption of subfigure 4

(c) Caption of subfigure 2 (d) Caption of sub-
figure 3

Fig. 8. Logos for use with CALCnet?? , including [(a)|[(c)|[(d)] computer-side logos for documents,
HTML, and PDFs, and|(b) oncalc logos and icons.

or other parity mechanism might provide the means to reconstruct damaged data and decrease
the number of retries necessary for a successful transmission on a noisy or crowded network.
Continued adjustment and fine-tuning of network timing might allow higher throughput with
negligible increases in retries or failures.

Secondly, current frames are capped at 255 bytes of data payload, although the size field of
frames is two bytes to allow for larger payloads. It is currently infeasible to provide larger frames
due to the size of the buffer, but future expansions including allowing dynamic adjustment of
the buffer address might remove this limitation. In addition, a possible streaming mode might
allow additional functionality impossible with the block-based architecture of CALCnet*? .

Finally, though the protocol has been thoroughly tested on different combinations of TI-83+,
TI-84+, and TI-84+SE graphing calculators, further testing under larger networks, both in terms
of endpoints and physical end-to-end length, new hardware developments, and more demanding
applications will allow the reliability and robustness of CALCnet to be further improved.

8 CONCLUSION

CALCnet*? has been shown to be a powerful, fast, robust, and effective network protocol
for TI graphing calculators in this paper. The frame-, byte-, and bit-level protocols have been
presented along with the electrical specifications of a CALCnet network. Complete guidelines
and documentation for implementing CALCnet*? support in games and programs has been
provided. Experimental results for performance, resilience, and throughput are presented and
analyzed. The author hopes that with the availability of such a powerful and extensible protocol
via the Doors CS 7.1 calculator shell, programmers will implement multi-user and multi-player
systems in their applications and games going forward.

9 ACKNOWLEDGMENTS

The author would like to thank the members of Cemetech for their feedback, advise, and stress-
testing assistance over the past eight years. Thanks especially go to Shaun “"Merthsoft” McFall

15

for his moral support and hub-building experiences, Albert ”AlbertHRocks” Huang for his
similar efforts, Thomas "Elfprincel3” Dickerson for encouragement over the years, and to the
other members of Cemetech and the calculator programming and hacking community. Thanks
to Chrystina Montuori Sorrentino for moral support, Billy Donahue, Timendus, and Michael
Vincent for their algorithmic advice, and Prof. F. Fontaine and the pLab research laboratory of
the Cooper Union for providing the computational resources.

REFERENCES

[1] P. Davidson, “The Ultimate TI Calculator FAQ - Transferring files,” http:/ /www.ocf.berkeley.edu/~pad/faq/xfer.html.

[2] T. Franssen, “BELL: Binary data Exchange Link Library,” http://bell.timendus.com/.

[3] ——, “CLAP: The Calculator Link Alternative Protocol,” http://clap.timendus.com/.

[4] R. Lievin, “TI Protocol Specifications,” http://www.ticalc.org/archives/files/fileinfo/113/11382.html.

[5] B. Ryves, “Benchmark of TI-OS Link Protocol Speed,” Internet Relay Chat conversation.

[6] O. Suominen and V. Crabb, “MBus v0.99: Multimaster network and I2C driver routines for TI-83,” http://www.ticalc.org/
archives/files/fileinfo/101/10122.html.

[7] M. Vincent, “michaelv.org - calculators - spectrum analyzer,” http:/ /www.michaelv.org/programs/calcs/sa.php!

[8] ——, “TachyonLink,” http://www.ticalc.org/archives/files/fileinfo/277 /27718 html.

http://www.ocf.berkeley.edu/~pad/faq/xfer.html
http://bell.timendus.com/
http://clap.timendus.com/
http://www.ticalc.org/archives/files/fileinfo/113/11382.html
http://www.ticalc.org/archives/files/fileinfo/101/10122.html
http://www.ticalc.org/archives/files/fileinfo/101/10122.html
http://www.michaelv.org/programs/calcs/sa.php
http://www.ticalc.org/archives/files/fileinfo/277/27718.html

	Introduction
	Motivation and Existing Alternatives
	Existing Link Protocols
	Electronic System

	Protocol Details
	Frame Structure
	Byte-Level Protocol
	Bit-Level Protocol

	Using CALCnet2.2
	Finding Network Members
	Sending
	Receiving

	Performance
	Network Throughput
	Collision and Fault Recovery

	Branding
	Future Work
	Conclusion
	Acknowledgments
	References

