
Matrices
Commands:

→

Used for storing to a matrix

dim(

Used for storing or getting dimensions of a matrix

Fill(

Stores a value to all elements of a matrix

randM(

Returns random matrix with values ù-9 and ÷9

Matrålist(

Stores a matrix to lists

Liståmatr(

Stores lists to a matrix

augment(

Concatenates two matrices

Using the Commands:

Matrices, like lists, can be used to store data. If you are creating a save system in a game, however, go with lists because matrices are less secure for storing data, as there are only ten of them. The commands above are only several of many that deal with matrices, but most of the others are concerned strictly with (boring) mathematical manipulation, so for now refer to Appendix B if you need to use them. Perhaps the most useful thing matrices are good for is creating maps, which we’ll get to after we learn the basics.
*Note: Matrix names must be pasted from the matrix menu into the program editor. To access the matrix menu, press [2nd], [X^-1].
To store data to a matrix, use box brackets ([]) and →.

[[6,7][13,42]]→[A]

The outermost brackets indicate that the whole thing is a matrix, and the inner brackets indicate rows within the matrix. Of course, you could leave the last two brackets off because, if you haven’t picked this up yet, → acts as closing parentheses, brackets, etc.

To declare a matrix, you can store its dimensions, just like with lists:
{rows,columns}→dim(matrixname

Fill(works the same for matrices as it does for lists:

Fill(value,matrixname
If you want to create a random matrix, use randM(:

randM(rows,columns

The disadvantage of randM(is that you can’t specify what types of numbers are returned in the matrix; randM(only returns integer values between -9 and 9. If you want to create a random matrix with elements in a certain range, you could use nested For(loops (one for rows and one for columns) and randInt(or rand.

If you need to save matrix data, you should store it to lists:

Matrålist(matrix,list1,list2…

Later, you can store the data back to the matrix:

Liståmatr(list1,list2…,matrix
Just like with lists, you can combine two matrices:

augment(matrix1,matrix2

Note that both matrices must have the same number of rows.
To return an element from a matrix, you can do this:

matrix(row,column)

Sample code:

Output:
[image: image1.png]:ClrHome

:{6,3→dim([A]

:Fill(6,[A]

:Pause [A]
:ClrHome

:randM(6,4→[B]

:Pause [B]

:ClrHome

:augment([A],[B]→[C]

:Pause [C]

:ClrHome

:DelVar [A]

:DelVar [B]

:DelVar [C]
Explanation:

First, matrix A is defined with six rows and three columns, then it is filled with sixes and displayed using Pause. Next, a random matrix is stored to matrix B and displayed. Matrices A and B are combined, stored to matrix C, and matrix C is displayed. Because matrices tend to take up a good amount of precious RAM, it is a good idea to delete them after you’re done using them.
Sample code:

Output:

[image: image2.png]:ClrHome
:[[1,2,3][4,5,6][7,8,9→[A]

:Pause [A]

:ClrHome

: Matrålist([A],[L]A1,[L]A2,[L]A3
:DelVar [A]

:{3,3→dim([A]

:Pause [A]

:ClrHome

: Liståmatr([L]A1,[L]A2,[L]A3,[A]

:Pause [A]

:ClrHome
Explanation:
First, elements are stored to matrix A. After matrix A is displayed, it is stored to three lists, then deleted. The dimensions of matrix A are defined, then it is displayed to show you that its contents have been erased. The lists are stored back to the matrix and the matrix is displayed again.
Sample code:

:ClrHome

:[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1][1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1][1,0,1,0,0,2,0,0,0,0,1,0,0,0,0,1][1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1][1,0,1,1,1,1,1,0,0,0,1,0,0,0,0,1][1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1][1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1][1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1→[A]

:For(A,1,8

:For(B,1,16

:[A](A,B→Z

Output:
[image: image3.png]:If Z=0

:Output(A,B,"

:If Z=1

:Output(A,B,"*

:If Z=2

:Output(A,B,"+

:End

:End

:4→A:8→B
:While 1

Output:
[image: image4.png]:Output(A,B,"π

:getKey→Z

:If Z

:Output(A,B,"[one space]
:A→C:B→D

:C+(Z=34)-(Z=25→C

:D+(Z=26)-(Z=24→D

:If [A](C,D)≠1

:Then

:C→A:D→B

:End

:End

Explanation:

First, our map is stored into matrix A. The matrix will have eight rows and sixteen columns, enough to fill the entire homescreen with characters. Nested For(loops access the matrix’s elements and output a space for a zero, a * for a 1, and a + for a 2. Then a While loop allows us to move a π around the screen. The * act as walls and the + represents an object that could be collected by the π. Notice that we use the “scouting ahead” method that we used way back in the getKey tutorial. Variables C and D act as our scouting coordinates to check the matrix. If the matrix element that is scouted is a 1 (indicating a *, or wall), the actual coordinates of π (variables A and B) remained unchanged. If the scouted matrix element is not a 1, the scouting coordinates are stored into the actual coordinates, allowing the π to move.
Conclusion:

Like lists, matrices can be good for manipulating large amounts of data, but should not be used for long-term storage. With a little bit of creativity, you can use matrices to create maps for use with graphical games. Experiment with the third sample code and try to see if you can’t come up with some kind of a game. Remember, you could always restore specific elements to the matrix during the main gameplay loop. Next, go to “Strings”.
©2006-2007 by MDR Falcon / www.geocities.com/revolution2032/games

