

The Elite Guide to TI-BASIC

Table of Contents

Introduction..2

What You Will Need.......................................2
How to Use this Guide....................................3

Idioms..4
Invisible 'Done'...4
Booleans...4
DelVar...5
Scrollable Lists...5
Correct Usage of Pause...................................5
Pause Idioms...6
Difficulty Setting with Menu(............................6
Hidden Run Indicator.....................................6
Dynamic List Size Counter................................6
MirageOS and getKey(.....................................7

General Tips and Tricks.......................................8
Big Text...8
Pixel Stroking...8
Closing Punctuation......................................8
Multicommand Lines.......................................8
Centering Text...9
Homescreen Text Specs....................................9
Graphscreen Text Specs...................................9
Text on Grids...10
Using Ans...10
Variables to Avoid......................................10
Text Characters to Use and Avoid........................11
MirageOS and Doors CS Tags..............................11
Consistent Variables....................................11
getKey Scancodes..12
Return and Stop...13
IS and DS...13
XORing..13
Friendly Windows..13
Indicator Lists...14
Setting the rand Seed...................................15

--1--

Advanced Programming Strategies..............................16
Avoiding Memory Leaks...................................16
Program Groups..17
Trees...18
Consistent User Interface...............................18
Optimizing with TI-OS Functions.........................19
Accessing Hidden Characters.............................19
Objects in TI-BASIC.....................................19

About The BASIC Elite..21

Staff

Co-Editors-in-Chief.....
[] Kerm Martian
[] Jon Pezzino

Introduction

If you are reading this, you are probably a budding young
TI-BASIC programmer looking for some inside tips on how to
master your favorite language. There is something about TI-
BASIC that draws programmers in like flies to honey. I can tell
you that I valued the fact that it can be programmed in a
medium that is readily available during school, a time period
when one's mind is brimming with ideas waiting to be realized
in an ingenious program. The language is relatively simple and
easy to learn for first time programmers because its syntax is
remotely similar to English. Graphics are extremely easy to use
in TI-BASIC, even for the novice programmer.

That having been said, let me say this: TI-BASIC is a weak
language on a low-performance platform. It is in no way speedy,
efficient, convenient, special, well-documented, or
particularly useful outside the scope of mathematical programs.
Algorithms that would be considered totally acceptable in
C++/Java or any other high-level programming language simply do
not work due to speed or memory limitations on the z80-based TI
Calculators, of which there are many. There is a stifling lack
of support for advanced data structures and objects, something
many programmers would be unable to live without. I personally
would never program in TI-BASIC were it not for the fact that
it is an excellent diversion for the mathematically-oriented
intellectual during class time. The situation, however, is not
hopeless.

This guide aims to document and reveal many of the
henceforth unknown or little-known features of TI-BASIC,

--2--

provide strategies for overcoming processor speed and memory
limitations, and sketch out overall good programming
strategies. You will learn to do things you would never have
thought possible in TI-BASIC and amaze your friends with your
sheer programming skill. It is my hope that you will find this
an enlightening read that will educate you not only in the
technicalities of TI-BASIC, but instill on you, the reader, a
sense of good programming style and encourage you to continue
and expand your programming career.

What You Will Need
This guide assumes you already have a solid knowledge of

TI-BASIC and are a fairly competent programmer in general.
Knowledge of computer languages such as C++/Java is a plus. As
the author, I will be writing from the perspective of someone
who is familiar with these languages and as such it would be
beneficial for the reader to be in a similar mindset so as to
fully comprehend the ideas presented.

This guide also assumes that you own a TI-8x series
calculator. These tips have only been tested on a TI-83+SE and
TI-84+SE, though I am 100% certain that these will work on a
TI-83+ and slightly less confident that they will work on the
TI-83 series or lower.

How To Use This Guide
This guide is not intended to be a tutorial and by no means a
complete guide to TI-BASIC. Ideally, you will read through this
guide and reference it while writing your programs. This guide
is organized into 3 sections: Idioms, General Tips & Tricks,
and Advanced Programming Strategies.

--3--

Section 1: Idioms

An idiom is a piece of code that programmers use over and over
again, from program to program. Idioms may be speed up your
program, make your code more understandable, or just impose
arbitrary standards on your programming style. Idioms also
provide you with a library of commonly used functions so that
you do not have to figure out the best way to perform basic
functions from scratch. Make it a habit to utilize idioms in
your program.

Invisible 'Done'
The annoying and unprofessional looking 'Done' that appears
once your program has ended can easily be eliminated by
inserting the following code at the very end of your program:

:ClrHome
:Output(1,1,''

This program has to do with the fact that output remains after
the program has executed and thus the null character (note that
there is not a space after the quotation mark) overwrites the
Done.

Booleans
One interesting aspect of the TI-OS is that boolean values are
represented using 0 and 1 rather than true and false as is the
usual case. There are a variety of conventions that utilize
this aspect of TI-BASIC. Here are two of the most common:

Conditional Increment without If
Variables can be easily incremented without the use of
separate If and assignment statements. Take a peek at the
following code segment where 'A' is incremented by 'I'
when <condition> is satisfied.

:A+I(<condition>×A
Remember that <condition> requires one of the test or
logical operators (=, >, <, or, and, etc.). One common use
of this idiom is when the condition is dependent on a
getKey call and A is a variable representing a coordinate
of object that is moved around using the arrow keys. This
convention is much more elegant than multiple if
statements (comparable to a++ in higher-level languages),
not to mention that it saves a byte or two by eliminating
an If and newline in favor of a parenthese.
Never Use '=' for Tests of Boolean Values
You will often write programs that use variables whose
values will strictly be 1 or 0 (used as
indicators/booleans/flags/etc.). Remember that you can

--4--

save precious bytes of memory by eliminating the use of
'=' or '!=' (not equal). To test if boolean A is true
replace this:

:If A=1
with this:

:If A
The same can be applied for a false test:

:If A=0
turns into:

:If not(A
This may seem trivial in terms of memory saved, but saving
two bytes per conditional test can really add up to big
savings in memory in large programs. In addition, If A is
true regardless of the value of A, as long as it is
positive and nonzero.

Favor DelVar over '0--><var>'
This is not an extremely important tactic, but it can help if
your program is constantly reseting values to 0. DelVar saves a
byte when several vars are deleted at once because multiple
DelVars can be placed on one line with no special treatment:

:DelVar ADelVar BDelVar C
Surprisingly enough, the above is legitimate code and its
example should be followed when appropriate. You can also place
any other command on the same line as DelVar to save even more
memory:

:DelVar ADisp B
Note that you cannot use DelVar on elements of a list or
matrix.

Create Scrollable Lists with Ease
If you ever need to display a list to the user, you would
ideally output the values on the graph screen on a nice little
table. However, if the list is short or not incredibly
important, or you are just slapping a program together in a
minimal amount of time, you can easily create a scrollable list
with this piece of code, which displays L1 in a scrollable
format:

:Pause L1

Use Pause <var> Effectively
Yet another handy use of Pause is its ability to display a
value as well as pause at the same time. For instance turn code
like this:

:Disp A
:Pause

Into this:

--5--

:Pause A
Note that only one string or variable can be displayed at once
using this method; no commas to separate arguments allowed!

A Simple Pause Idiom
This is a simple idiom that will pause your program until the
user presses any key on the calculator, as opposed to 'Pause'
which will only respond to ENTER:

:Repeat getKey
:End

Set Difficulty Levels using Menu(
There is a very neat idiom for setting the difficulty level of
your game using Menu(. (Assume your difficulty is represented
by 'L.')

:1×L
:Menu(''SET
DIFFICULTY'',''EASY'',E,''MEDIUM'',M,''HARD'',H
:Lbl H
:L+5×L
:Lbl M
:L+5×L
:Lbl E
:<rest of program>

As you can see, this is much better than manually setting the
level and then skipping to a convergent label for all levels
because it avoids having to use Goto; the harder the label the
higher up the program 'starts' and just keeps going down the
hierarchy.

Hidden Run Indicator
You can make your measly BASIC program look like a high-quality
ASM program by eliminating the normally inaccessible runtime
indicator in the upper-right corner of the screen with this
line of code:

:Text(-1,0,90,''<space>
This trick utilizes the large font to overwrite an area of the
screen that is normally reserved by the TI-OS.

No Counter Needed for Dynamically-Sized Lists
One feature of many higher level languages is the ability to
use data structures known as array lists or vectors. These are
essentially identical to the Lists provided by the TI-OS,
except that they are dynamically sized and thus elements can be
added without worrying about what index to add them at. With a
little bit of know-how, these data structures can be mimicked
in TI-BASIC. If you wish to add variable 'A' to list LIST,

--6--

which is of indeterminate size, the following call will
eliminate the need to keep track of LIST's size using a
separate variable:

:A×LLIST(1+dim(LLIST
This idiom takes advantage of the fact that the size of a list
can be increased simply by adding an element at its next
nonexistent index, which is automatically created by TI-OS when
such a call is made.

MirageOS and getKey
One annoying quirk of MirageOS when running BASIC programs is
its tendency to register 2nd or Enter (whichever was pressed to
run the program) as the first getKey in the BASIC program
(something to do with key buffers, I suspect.) Make sure that
you clear the getKey buffer with a getKey command after your
mirage tag if your program depends on detecting 2nd or Enter
through the use of getKey.

::''MY PROGRAM
:getKey

--7--

Section 2: General Tips and Tricks

This section will cover some good syntactical tips and tricks
as well as some of the subtle yet simple dos and don'ts of TI-
BASIC.

Big Text On the Graph Screen (TI-83+/84+ only)
This trick allows you to output home screen-sized font to the
graph screen in the same manner that you can output small text
on the graph screen. All you need to do is provide a -1 in the
text argument before the row/column arguments:

:Text(-1,<row>,<column>,<string or value>
This call will function like any other text call, so feel free
to append multiple strings or values to the argument as you
normally would. Just remember that the text will be much bigger
than normal and so you will not be able to fit as many letters
per pixel as with small text.

Change the Pixel Stroke
This is an undocumented feature to draw a thicker pixel with
the Pt-On command:

:Pt-On(X,Y,n
When n is 1, the Pt-On command acts as usual. When n is 2, an
open box with its center at (X,Y) is drawn. When n is 3, a 3x3
cross is drawn with its center at (X,Y).

(Almost) Never Use Closing Parentheses or Quotes
This is a fairly nit-picky memory-saving trick, but as
mentioned before, every byte counts in TI-BASIC. As a rule, you
almost never need closing parentheses or quotes, such as in the
following:

:A(B-C)
Should really be:

:A(B-C
There are some exceptions to this rule, however, such as when
such expressions are in a list of arguments of another
expression or function

:Text(0,0,L1(A),<string>
If the bolded parenthese were not there, the TI-OS would
attempt to parse <string> as an argument for the index of L1,
causing an error.

Never Put Multiple Commands on One Line Separated by Colons
Clever programmers may have noticed that if you put a colon
after a command or statement, you can fit multiple commands on
one line. DO NOT DO THIS! Multiple commands on one line will

--8--

make your program difficult to read and modify. Furthermore,
using such a convention will make it more likely that you will
accidentally delete multiple lines of your code with one
wayward press of the Clear button. You will lose far more code
using colons than newlines if you accidentally press Clear
because Clear ignores colons, deleting all code in its path
until it finds a newline. One of the most common error that
programmers make is with If <condition>:Then statements:

:If <condition>:Then
This is a no-no. Instead simply put the 'Then' on a new line:

:If <condition>
:Then

Centering Text Quickly and Easily
Centering the text on your title screen can often mean the
difference between your program looking like that of a sloppy
amateur or a professional TI-BASIC guru. Luckily, centering
text is INCREDIBLY easy if you just keep the following method
in mind:
1)Count the number of letters in the string you want to center.
2)If you are displaying on the home screen, keep in mind that
there are 16 characters per row, so simply subtract the result
from #1 from 16, divide by two, and add that many spaces to
your string. (A similar strategy can be applied to using Output
(instead of Disp.)
3)If you are displaying on the graph screen, remember that each
character is 6 pixels high by 3 across (except spaces) and that
there are 95x63 pixels available to display on. Apply a similar
strategy as mentioned above.

Screen Display Specifications
It is often handy to know the specifications of the home screen
and graph screen.

➢ Home Screen
• 8 rows by 16 columns
• Output(<row>,<column>,<var>) (row and column start at

1)
➢ Graph screen

• 96x64 pixels
• 95x63 pixels accessible to programmer
• Text(<row>,<column>,<var>[,<var 2>...<var n>])

(row and column start at 0, so max argument
for row is 94 and max argument for column is
62)

--9--

Specifications: Text on the Graph Screen
Each character in normal font on the graph screen is 6 pixels
high (including the space at top) and 3 pixels across. Each
character in the large font (Text(-1,<row>,<column>,<text>)) is
7 pixels high and 5 pixels across.

Displaying Text on Grids
Have you ever tried to display text on a grid on the graph
screen? Did you ever notice that sometimes letters appear to
overwrite grid lines for no reason whatsoever, while next time
you run the program, it may not happen at all? Well, don't take
chances that this random error will plague your program:
eliminate the risk of this aesthetic nightmare by redrawing
surrounding grid lines every time you output text to the graph
screen. Here is an example from a chess game where a rook is
being drawn (assume each grid space is 5x5 pixels):

:Text(1,1,"R
:Line(0,0,5,0
:Line(0,-5,5,-5

As you can see, the grid lines above and below the space in
question are redrawn just in case the error decides to strike.
I am not sure what exactly what causes this error to occur, but
I can tell you that you will be happy when you do not have to
worry about it!

Using the Ans Variable
Many programmers in TI-BASIC find it useful to write
'functions' or programs that take a parameter in the form of
one variable and modify it so that the parent program can use
that variable as if it had modified it itself. By default, all
functions should use the Ans variable as their argument because
it makes calling functions easier:

:X
:prgmSOMEFUNC
:Disp Ans

In this segment, the programmer does not have to worry about
which variable to store so that that SOMEFUNC works properly;
he simply declares the expression he wants the function to
perform on and reaps the rewards in Ans form as well.

Avoid using X, Y, and sometimes n , T, and Á
Whenever the graph screen is accessed, certain variables are
accessed and modified by the TI-OS (depending on the graphing
mode). These variables are X, Y, n, T, and Á. Avoid using these
variables for any sort of data other than a temporary counter
when only the home screen is being used. Also note that n

--10--

cannot hold negative values because it is used as an index for
sequences, which only use positive integers. In addition, Y
will often default to 0 when you first use the graphscreen
regardless of what you might have set it to; especially do not
use it in this circumstance.

Favor Capital Letters over Lowercase
Although the idea of using proper grammar in your program may
seem attractive, the memory costs of doing so can be high.
Lowercase characters occupy twice the memory of uppercase
characters. Think about this: in a text-intensive program, the
size of your program could literally double if you use
lowercase! That is a sacrifice that can rarely be made except:
 a)in text editors
 b)in programs with a minimum number of menus or overall text
 c)on title screens
 d)in MirageOS tags.
Think long and hard before deciding to use lowercase characters
in your program!

Utilize Mirage and Doors CS Tags
In case you didn't know, you can make your TI-BASIC program
compatible with MirageOS by changing the first line of the
program to:

::''<program name/description>
You should always take advantage of this technique: it will
improve the popularity of your program because it will be able
to be accessed along with peoples' other games rather than
through the TI-OS and it will be accessible from the Archive,
meaning your customers will not lose their program when their
RAM clears, meaning they will be able to pass it on to other
calculator owners.
Even better, you can make your BASIC programs compatible with
two of the major shells at once, Doors CS and MirageOS, by
substitution the previous first line to this:

::DCS
:0123456789ABCDEF

where 0123456789ABCDEF is a series of 16 hexadecimal numbers
representing an 8x8 icon. If you do not know hexadecimal,
simply use FF818181818181FF for a generic icon.

Choose Consistent Variables
Part of programming is programming consistently: making an
overall plan and sticking to it each and every time. This task
becomes much easier if you use the same variables for the same
tasks over and over again. This way, you will never get
confused about which variables to use for what functions

--11--

because you will have a template for such. This will minimize
debugging time and make it easier to understand your code even
if you have not looked for it in a long time. Below are some
standard variables and their uses:

-I,J,Á,Z: For(Loops (J and Z are for nested loops)
-A,B,C: General temporary variables
-D,O: Can be used to represent a coordinate pair whenever
it is appropriate to think of displaying in terms of
'Down' (D) and 'Over' (O), such as when using the Output
(function or Text(function.
-R,C: Can be used to represent a row/column pair
-P,Q: Another utility or secondary pair
-K: a temporary getKey storage variable

You do not have to use this exact template for your programs;
the important thing is to choose a template that makes sense to
you and stick with it.

Know The getKey Scancodes
You can save yourself time and the unnecessary effort of
referencing getKey codes if you remember this simple system:
The first digit of the code is the row, the second in the
column. Note that in row 10 the number becomes 10<column>. Here
are the key codes for the arrow keys, which are probably the
most commonly used getKey codes yet also the most confusing to
figure out:
Left: 24
Up: 25
Right: 26
Down: 34

--12--

Distinguish Between Return and Stop
In functions you may sometimes find it useful to return to the
parent program before all of the code has been executed, such
as in the case of exceptions or algorithms/searches of
indeterminate length. Remember that unless you have a truly
exceptional condition, functions should almost never use Stop.
Calling Stop will cause the entire program hierarchy to stop,
not just the current program, whereas Return will return to the
program that called the function in question. Utilizing Return
will also allow the program to return to MirageOS and Doors CS
rather than crash to the TI-OS.

Never use IS>(or DS>(
These two functions provided by TI-BASIC are essentially
mistakes. They are confusing, rarely-used, and archaic. There
is no proper or understandable documentation regarding their
use, so attempting to use them will most likely cause results
you might not expect. Favor other, more well-known idioms for
conditional incrementing such as the one provided earlier in
this guide.

Understanding xor
Many programmers are unaware of the use of the relative xor
operator. Knowledge of this operator can save you many bytes of
unnecessary and/or statements. The xor means 'either or'; it
will evaluate to true only if one of the expressions is true
and the other is false. One example of where xor can be used is
in games where a piece or unit can be moved one space forward,
backward, or to the side but not diagonally:

:''P and Q are the coordinates of the move whose legality
is being evaluated, R and C are the coordinates of the
current unit's space.
:If abs(P-R)=1 xor abs(Q-C)=1
:<move there>

Use A Friendly Window
The ideal graph screen settings will use a coordinate system
that correspond to the pixel coordinate system (so that text
and lines can be used similarly and without translation between
pixels and points). Personally, I find that the best graph
screen has the following settings:

Xmin: 0
Xmax: 94
Ymin: -62
Ymax: 0

--13--

With these settings, all one needs to do to translate between
points and pixels is juxtapose x and y and use an opposite sign
in front of the y value. This will save valuable time and space
that might otherwise be used translating the graphics context
from points to pixels if both Text((which accepts pixel
coordinates) and Line((which accepts point coordinates)
commands are used.

Use 'Indicator Lists' to Check for Saved Data
One of the more difficult challenges in TI-BASIC is devising a
method for loading saved data from previous instances of your
program. The dilemma is this: implement auto-loading and assume
that the user was savvy enough to run the installation program
ahead of time so that they will not get an error when they run
your program or add a Load option, which is awkward for the
user because you will often your program to automatically load
old data. I offer a third solution to the saved-data dilemma:
so called 'Indicator Lists.' An Indicator List is a list of
saved data whose existence the program can verify without
causing an error if it does not. There are two ways to
implement an Indicator List: the 'false initiation' method or
the dim(check method. The false initiation method is quite
simple. At the beginning of your program, store a dummy value
(usually 0) to the first element of the list you are using to
save data then check the dim of the list. If the dim is just 1
(from storing the dummy value), then you know this is the first
time the user has run the program and there is no saved data.
Otherwise, you know that saved data exists in the list and you
may feel free to proceed without fear of crashing your program
through the dreaded ERR: UNDEFINED because if the list does not
exist, storing to its first element will instantiate it. Here
is an example (Note that Lbl 1 would be the point where you
know that saved data exists, otherwise the program continues on
as if no saved data exists):

:0×LDATA(1
:If 1<dim(LDATA
:Goto 1
:<assume no saved data exists>

The only true disadvantage of the false initiation method is
that you will need to offset the list indexes of your data by
one because the dummy value will otherwise clear the first
value of saved data in the list, but this can easily be
overcome with a little bit of planning beforehand.

The dim(check method is equally easy to implement.
Remember that another way to instantiate a list is to store a
number to its dim. If the list already exists, doing so will
not modify the data stored in it. Thus, you can safely store

--14--

the desired dimension to your list in the beginning of your
program and then check to see if the first value is 0 (there is
no saved data) or another value (there is saved data). Here is
an example:

:10×dim(LDATA
:If 0=/=LDATA(1
:Goto 1
:<assume no saved data exists>

There are a few more cons to the dim(check method, but you
will want to use it if it is essential that you need to use the
first value of your list data. The dim(check method will not
work for lists of unknown size (unless you store 999 to the
dim, the maximum size allowed) because you could potentially
delete data if the saved list is longer than the dim you store.
Another disadvantage of the dim(check method is if the first
value of your list could potentially be zero. If such is the
case, then the dim(check method will not work unless there is
another value in the list which could never be zero were there
saved data.

Setting the rand Seed
There is a handy undocumented trick to set the seed for the
rand command:

:N×rand
where N is any real number. Remember that the same sequence of
random numbers will be generated (using rand) if N is the same
number. This trick can be utilized in encryption keys because
every N will generate a unique sequence of random numbers.

--15--

Section 3: Advanced Programming Strategies
This section contains advanced strategies regarding programming
in TI-BASIC. These are conceptual strategies rather than
syntactical tricks; you must keep these tips in mind from the
moment you start writing your program in order to utilize the
to their fullest potential.

Avoid Memory Leaks
This might seem like a fairly subtle and unimportant

programming strategy, but it is vital to a program with lots of
iterations. Failure to follow this rule is the cause of so
called 'program fatigue' where the program runs slower and
slower as time goes on. Failure to follow this rule is also the
cause of most of the mysterious 'ERROR:MEMORY' messages you
might receive when your program is running.

The rule is based on the principle that every time that
the TI-OS detects the beginning of a control structure (While,
For(, Repeat, If <condition>:Then) or a program call
(subprogram, subroutine, function, whatever you want to call
it), it allocates memory space to remind it to search for the
End that accompanies the beginning of these control structures.
If, however, you exit the loop before its corresponding End has
been reached, you will leave that little piece of memory
dangling and doomed to clog your RAM until the program exits.
The most common way to exit a loop is use of the misunderstood
Goto statement (though I suppose horrendous use of the Menu
(function could also qualify). An example of poor use of
control structures is provided:

:While 1
:If getKey=45
:Goto 1
:End
:Lbl 1

Notice how the End that complements 'While 1' will never be
reached? TI-OS doesn't know that and as such will wait for that
End to be reached at some point in time, using up memory. The
above example can and should be replaced with something that
does not cause a memory leak:

:0×A
:While not(A
:If getKey=45
:1×A
:End

Note that this is not necessarily the best or most elegant
solution, but it readily demonstrates the principle of memory-
leakage through improper use of control structures.

--16--

This rule might also lead you to infer another rule:
generally avoid the use of Goto and Lbl. These conventions are
inefficient, confusing, obsolete, and ineffective the vast
majority of the time and are usually avoided by skilled
programmers in any language. Overuse of Goto will create so-
called 'spaghetti' code, where reading your code becomes akin
to untangling spaghetti because it is so difficult to
constantly follow the path that the gotos will take you. Also
note that Goto will slow down your program as a whole because
the program interpreter has to scan the entire program to look
for a label when it encounters Goto. This is much slower than
other control structures, which the TI-OS is able to handle
much more efficiently.

Another common cause of memory-leakage is a tangled
program/subprogram hierarchy. Avoid recursive programs
(programs that call themselves) because if they recur too much,
they will gobble memory up like none other, causing the
original program to crash. Also, make certain that programs
have an established hierarchy so that when a subprogram is
called, it is guaranteed to return to its parent program. For
example, if you were to have a program whose purpose was to
take in input, use subroutines to display the output, and start
all over again, you would want to make certain that the parent
program is handling everything, unlike in this diagram:

Parent Program -> Subprogram 1 -> Subprogram 2 ->
Subprogram 3 (displays answer) -> Parent Program...

As you can see in this diagram, Subprogram 3 does not ever call
the original parent program, instead minting a new 'instance'
of the parent program, dooming the original parent to
needlessly gobble up memory. Instead, the diagram should look
like this:

Parent Program -> Subprogram 1 -> Subprogram 2 ->
Subprogram 3 (stores answer, then returns, traveling back
up the program hierarchy to Parent program)

Use TI-Groups as 'File types'
In your TI-BASIC programming career, you may occasionally write
a program in which it is necessary to share data with other
calculators. The best way to do this by far is the use of
groups. Simply create a group of all data files the program
will use and send that group to your friend's calculator. This
will save you the effort of having to remember which files you
need to send to share data, it will archive your data and thus
save it in the event of a RAM clearance, and keeps everything
together in one neat package. It also makes it easy to 'open' a
file: simply ungroup. Obviously, BASIC programs cannot modify
groups, so you will have to re-create the group to change data,

--17--

much the same as you would have to load a file into your
computer's RAM to modify before writing it to your hard drive.
Iterate through Strings and Use them to Store Data
Often, hard coding rules or superfluous frills (such as names
or symbols) can be a tedious task. Rather than go through the
hassle of using multiple If statements to define symbols,
characters, or names, why not simply store them into a string
and access its substrings? This approach is much more friendly
when it comes time to change your program; Say you decide you
want to represent the player as an 'O' rather than an 'X' or
change an enemy from '*' to 'M'. This code is an example of
such. The player is represented as an 'X' and there are three
enemies, *, V, & M.

:''X*VM×Str1
:''Later in the program...
:Output(<player's Y-coord>,<player's X-coord>,sub(Str1,1,1

And an example of storing names and recalling through
iteration:

:''BILLYJOE FRED BOB JANE ×Str1
:Prompt A
:Disp sub(Str1,5A,1

If you cannot figure out what this code does, try putting it in
your calculator and entering a number 1-5 when prompted for A.
(Notice how every 'friend' has a 5-character-long name, even if
it has to be made that long with spaces.)

Trees
Keep in mind that a tree can be stored in an array (list) using
the following algorithm:

Node X
Parent Node: Node X / 2
Children: Left: Node 2X, Right: Node 2X + 1

Of course, it is difficult to sort such a tree (or balance,
heap/reheap, etc.), but it is very easy to search (big-O log n)
and to add new items such that the tree remains a binary search
tree. Consider using a tree in your next data-intensive
program. (Note: this is not an in-depth explanation of trees;
however, I feel this will only benefit people with prior
knowledge of trees and as such don't see fit to explain them
here.)

Use a consistent User Interface Format
A consistent UI will make your program much easier to use
because the user will not have to figure out what the program
is doing each time something new comes up: they will be able to
pick up on the pattern of formats and tell on their own. For
instance, always use an understandable and consistent format

--18--

with the Input function. For example, if you decide the below
format is how you will prompt for numbers, then always use this
format when prompting for numbers.

:Input ''How Many? '',A
Here is an example for a good menu format:

:Disp '' HELLO'',''----------------
Notice how the text is centered and the underlining goes across
the entire screen.

Use Functions Provided by the TI-OS
The TI-OS provides many useful math functions. Oftentimes you
will find yourself writing a long and complicated algorithm
only to discover that there is a fast, efficient, pre-made
function provided by the TI-OS to handle what your are trying
to do. For example, you might be trying to calculate the angle
of a complex number. Such an algorithm written in TI-BASIC
would take approximately 30 bytes and cause considerable speed
problems. This situation could easily be remedied with a simple
call of the angle(function, saving you time and memory and
speeding your program up significantly. Get familiar with the
TI 'API' so that you know when to use a pre-made function and
when to write your own.

Utilizing Inaccessible Characters
There are a number of characters which you cannot enter on the
calculator. Since most BASIC programs use text instead of
sprites, a wider of selection of characters to represent
objects can greatly improve the aesthetics of your program.
(See
http://www.ticalc.org/archives/files/fileinfo/350/35050.html
for an excellent example of this. Notice the player's character
and the boss character.) Because you cannot directly type these
characters into your program, you should develop a strategy for
accessing these characters. One such strategy could be to
create a string of all the inaccessible characters on your
computer and send it to your calculator, then recall the string
into a program that will restore the string when run. Then,
when you need an inaccessible character, simply run the above
program, and recall the string while editing the program in
question requiring the character.

Objects in TI-BASIC
One of the main qualms programmers used to higher level
languages (especially Java) will have with BASIC is lack of
support for objects. However, you can simulate objects fairly
well if you know what you are doing using complex numbers and

--19--

lists. A complex number has the following properties (also
listed are their equivalents in a higher level language):

Positivity/Negativity of real number (boolean)
Integer part of real number (unsigned int)
Decimal part of real number (unsigned int)
Positivity/negativity of imaginary number (boolean)
Integer part of imaginary number (unsigned int)
Decimal part of imaginary number (unsigned int)

As you can see, one complex number can hold quite a bit of data
(six instance fields, to be precise). Now, considering that you
are programming on a calculator running at 6 MHz, that is quite
a bit of flexibility and power if you know how to unlock it
using the real(, imag(, iPart(, and fracPart(commands. Think
of how many classes you can emulate with six instance fields;
there are quite a few! For example, you could have an enemy
spaceship that has an x and y coordinate (determined by Integer
& Decimal parts of real number), a directional heading (Integer
part of imaginary), a health amount (Decimal part of
imaginary), a boss indicator (postivity/negativity of real),
and some other indicator (positivity/negativity of imaginary).
One could create quite a complex and memory-efficient game
following this plan. Unfortunately, this approach is not very
fast at all. It takes quite a bit of work to
compress/decompress a complex number, making this
implementation of objects impractical for games that are in
real time. There is however, a solution that sacrifices memory-
efficiency for more flexibility and speed.

The other way you can implement objects is through
parallel lists. In this approach, you create a series of lists,
each one representing one instance field. For example, you
might create LX, LY, LDIR, and LHEA if you were trying to
create a game similar to the one described above. An object is
represented by the values of the lists at a specific index. For
example, the object with value one would have an x value of LX
(1), a y value of LY(1), etc. As you can tell, this approach is
much more memory-hogging, but it is worth it if you are more
concerned about speed than memory-efficiency. Another advantage
of this approach is that you are not limited to the number of
instance fields you can have or their type. You simply create a
new list for every variable you want to have.

--20--

About The BASIC Elite

This guide is brought to you by the CemetechTM BASIC Elite. The
BASIC Elite is an independent project overseen by Cemetech, the
goal of which is to promote the production of superior TI-BASIC
programs. The BASIC Elite publishes a bi-monthly newsletter
consisting of a variety of programming-oriented columns,
including reviews of top BASIC programs, spotlights on
promising new programmers, and new tips and tricks, along with
relevant articles discussing issues in the TI-BASIC community.
The BASIC Elite Newsletter is published on ticalc.org by
Jonathan Pezzino and Kerm Martian as a 'Miscellaneous
Informational Text.' You can also subscribe to our mailing list
by visiting the Cemetech Forum and requesting to be added in
the BASIC Elite forum under project. Visit the Cemetech website
for news on the latest BASIC Elite developments at
http://www.cemetech.net. You can also contact the authors of
this guide through their email, jon_p@sbcglobal.net (Jon) or
Kerm_Martian@yahoo.com (Kerm).

--21--

