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1. Introduction 
The functions presented here are not intended to solve linear programming problems. Neither 

are they intended to teach linear programming. Instead they should complement a good 

introductory text on the subject. Such a text can be found in “Finite Mathematics” by Lial, 

Greenwell and Ritchey. This book is frequently used in a college course for students majoring in 

business, management, economics, etc.  

 

Any student attempting to learn linear programming without, at least, help with a modern 

calculator such as the TI-84 is sorely disadvantaged. That student would be totally overwhelmed 

with the mountain of trivial calculations required to solve the most basic linear programming 

problem. Even with the help of the matrix features of the TI-84, the flood of trivial calculations 

obscures the beauty of linear programming solution methods. Burdened with repetitive, 

redundant obscuring calculations such a disadvantaged student would be able to solve few of 

the many rich exercises at the end of each section of the book. With the help of the functions 

presented here the student should be able to solve many of the interesting problems posed at 

the end of each book section. That … and have time for other concurrent college courses as well. 

 

The functions presented here are for the student equipped with a TI-Nspire CX CAS handheld or 

an emulator on a PC, iPad, etc. The “CAS” (Computer Algebra System) part is essential. The 

functions cannot be installed on the TI-Nspire without the CAS part.  

 

The functions should be introduced piece meal through the course as aids to automate methods 

already taught from the book. The student should know the process being automated and use 

the automation only to avoid repetitive calculations not contributing to the learning process. 

 

The functions are presented in three sets in Sections 4, 5 and 6 corresponding to the approach 

taken in “Finite Mathematics”. Section 4 addresses Standard Maximization Problems, Section 5 

addresses Standard Minimization Problems, and Section 6 the Nonstandard Problems. Section 7 

shows combining functions but in so doing hides the underlying simplex methodology.  For that 

reason, I debated including those functions at all. Use the Section 7 functions sparingly. Don’t 

use them to avoid learning the algorithms of solving linear programming problems. 

 

Following standards from the book, the subscripted variables xj, yj,, si, ai, z0 and w0 are 

reserved. There will be conflicts if you create variables with those subscripted names in your TI-

Nspire calculations. In all the problems, feasible solutions require that all xi and yi be greater 

than or equal to zero. This constraint will not be pointed out with each problem definition. 

 

The TI-Nspire can operate in either exact or approximate mode for calculations. Approximate 

mode introduces rounding and other problems so always use exact expressions when using 

these linear programming functions. This can be done by multiplying entire equations by a 

fraction removing constant or entering fractions in a numerator/denominator form. 



2. Platforms 
The functions presented here will execute on the TI-Nspire CX CAS handheld, the TI-Nspire CX 

CAS Student Software and associated emulators executing on the iPad. 

3. Installation 
All of these functions are bundled into a single file, “simplex.tns”. This file is to be installed in the 

“mylib” folder where it will join the other files (numtheory.tns and linalgcas.tns) from the 

default installation. The file can be transferred to the handheld using the process described for 

file transfers in the handheld owner’s manual. On a PC the “mylib” subdirectory is in the User’s 

Documents subdirectory which, unfortunately, Microsoft likes to hide. See this web reference 

on how to locate the User’s Documents subdirectory. 

 

After installing this file, you must “Refresh Libraries”. On the handheld, press Doc, then choose 

the “Refresh Libraries” option. On the Student Software, choose the Tools menu, then the 

“Refresh Libraries” option. Following this the functions may be accessed as the file name 

(simplex) followed by the backslash (\) followed by the function name. e.g., 

“simplex\pblmmax()”. 

 

Following installation, the function source code may be inspected and modified as desired. 

Furthermore, it may be distributed freely and for free.  

 

  

https://www.computerhope.com/issues/ch001735.htm


4. Standard Maximization Problems 
This section describes one particular type of linear programming problem, the Standard 

Maximization Problem. 

a. Definition of the Standard Maximization Problem. 

In this section we will address only Standard Maximization Problems such as the 

following: 

b. simplex\PblmMax(numVars, numEqns) 

The subscripted variables are difficult to enter so we introduce our first linear 

programming function. The numVars argument notes the number of variables and the 

numEqns the number of equations. This function creates a template for entering 

standard maximization problems customized for our number of variables and equations. 

We copy this template into an assignment statement, edit the ?’s with our coefficients 

and our problem definition is complete as the following example shows. For now, 

always leave the relation operator as is for all standard maximization problems. Also, 

the coeffecients for the objective function should all be positive. 

c. simplex\PblmToTab(pblm) 

Our next function creates a tableau from a problem definition. We know a tableau 

consists of the negative of the objective function on the bottom row, the constraint 

coefficients in a matrix and slack variables introduced for each equation as per the 

following. 

 



 
 

This function doesn’t seem to be doing much at this time but we will build on it in future 

sections of this document. It will grow into one of our most useful functions. Note that 

the top row of this matrix contains the header for the variables thus the row numbers of 

the coefficients in the matrix will appear to be one larger than book texts show without 

such a header. 

d. simplex\newTab(numVars, numSlacks, numArts) 

Occasionally the book will call for creating a tableau directly. This function will create a 

tableau template customized for our number of regular variables, number of slack 

variables and number of artificial variables as per the following example. As in the 

problem definition template, copy this into an assignment statement and edit the 

coefficients accordingly. 

 
 

e. simplex\pivot(tab, row, col) 

The book on linear programming describes a pivot. A pivot turns the pivot column into a 

basic variable with a single non-zero entry in that column. A pivot is simply a multiply-

row-and-add operation where each row requires a separate such operation. Let’s create 

a function that repeats that for each row and save ourselves considerable work as per 

the following example. Assume we wish to pivot upon the 3rd row, first column. Note: 



remember with our header row the row number is one greater than one would expect. 

 
f. simplex/unitize(tab, col) 

Continuing with the same problem, the book teaches us how to determine the next 

pivot to continue the optimization process. We take the most negative indicator in the 

lower row and that will be our pivot column. In our case, column 5. Within that column 

we form quotients with the right most column and our selected pivot column and 

choose the least non-negative one. After some painful arithmetic, we discover our next 

pivot cell is row 5, column 5. Performing that pivot we get to: 



 
It’s easy determining our next pivot column since there is only one negative indicator in 

the lower row. It’s column 3. Now we do some more, even more painful arithmetic to … 

whoa doggies, let’s make this a bit easier. Let’s unitize our next pivot column. That is, 

multiply each row by a positive number such that each entry is a one, negative one, or a 

zero. That would avoid the fraction in our denominator when computing our quotients. 

This leaves us with: 

 
The Unitize() function did it’s job well but we still have those nasty fractions in our right 

most column. We now use the feature of the TI-Nspire to go to approximate results by 

using a Cntl-Enter with our unitize function.  



 
Now we see clearly the least non-negative row and know our next pivot is row 2, 

column3. 

 
g. simplex\solution(tab) 

Continuing with the same problem, we know we have found the optimal solution 

because there are no negative indicators in the last row. Now we just need to interpret 

the tableau and extract those variable values. The rules are clear: if a column contains 

more than one entry the variable value is zero. If there is only one, it’s the ratio 

between the last column and that value. Again, know the rule and how to apply it, then 

use this function to make it easy and accurate. 

 
h. simplex\getpivot(tab) 

One final function and we are finished with solving Standard Maximization Problems. 

Determining the next pivot is a pretty straight forward process. Choose the column with 



the largest negative number in the last row, then form the quotients of the last column 

and that column, and finally choose the least non-negative row. Let’s automate that and 

be finished. 

We still have the three tableaus (b, c, and d) from the above exercises. Let’s use our last 

function on those three tableaus as follows: 

 
This function returns a list containing three items: the goal of the pivot, the row of the 

pivot and the column of the pivot. If you check you will find those pivots agree with 

what we determined manually above. 

i. Putting it all together 

The examples above have used the TI-Nspire Notes Application. The equations are in 

Math Boxes. Math Boxes have an attribute that allows you to hide the output from 

display. The following shows the entire process in solving this particular Standard 

Maximization Problem from problem definition through to extracting the solution. Most 



of the actual output has been hidden to conserve space. 

 

  



5. Standard Minimization Problems 
This section describes another type of linear programming problem, the Standard Minimization 

Problem. 

a. Dual/Shadow Problems 

Let’s take another look at the initial tableau for the last problem of the previous section. 

 

Keep in mind that each row represents an equality equation. As the xi grow larger, 

seeking a maximum, the poor little si are between a rock and a hard place. They have to 

yield to the growing xi without exceeding the rightmost constraint constant. When the 

problem finally gets to the solution to the maximization problem, the si have become as 

small as they could possibly get. In other words, they are a minimum.  

 

While solving a maximization problem, we have solved a minimization problem as well. 

If we were to “hide” our minimization variables as slack variables we could solve a 

certain minimization problem in the process. These complimentary problems are known 

as “Dual” or “Shadow” problems.  

 

b. Simplex\dual(pblm) 

Fortunately, as a book on solving linear equation will note, these “Dual” problems are 

easily derived with some matrix transforms and shuffling. The objective and constraint 

coefficients are exchanged and, with a few transforms, we see the Dual. Continuing with 

our example problem: 



 

This follows the custom of naming minimization problem variables as yi as a reminder of 

the problem type. Also, the objective function is noted as a “w” instead of a “z”. 

 

Guess what we get if we take the Dual of a Dual? 

 
Is this fun or what? 

c. Solving our first Standard Minimization Problem.  

We’ll contrive a problem that we already know how to solve. Note we have a mate to 

our old simplex\pblmmax() for minimization problems. i.e., simplex\pblmmin().  



 
Now it’s off to the races as before solving a maximization problem: Note we are hiding 



the Math Box outputs to conserve space. 

 
At this point we have finished the optimization of both our maximization and 

minimization problems and the answers are somewhere hidden in the final tableau of 

the f variable. 

d. Simplex\shadows(tab) 

We could easily extract the answer for our maximization problem using our old 

simplex\solution() function but we aren’t interested in that. We want the solution to the 

dual/shadow minimization problem. Remember we “hid” our original minimization yi 

variables as si variables. We did some tricky stuff using transforms, etc. Bottom line, as 

the books will note, our solutions are hidden in the bottom row under the associated si 

variables. i.e., y1=s1, etc. We need a function that will extract those solutions while 



renaming the variables back accordingly. 

 



e. Putting it all together while hiding output on intermediate calculations. 

 

  



6. Non-standard Problems 
This section described the third type of linear programming problems, Non-Standard Problems. 

a. Where are we going? 

Currently we can solve Standard Maximization Problems. That is, the inequalities are all 

≤ relations. We can also solve Standard Minimization Problems. That is, all ≥ relations. 

We do that by converting into Standard Maximization Problems. That’s the best we can 

do for now. 

 

In this section we address the rest of the possible relations in three steps. First, 

maximization problems with a mixture of ≤ and ≥ relations. Second, we add = relations. 

And last, we add non-standard minimization problems. 

b. Mixed ≥ and ≤ constraints. 

When we started with all ≤ constraints, we started with a feasible solution. i.e., the 

origin. When we add some ≥ constraints, we exclude the origin thus aren’t starting with 

a feasible solution.  

 

Following our book, Finite Mathematics, we add “surplus slack variables” which, unlike 

standard slack variables, start with negative signs. We also reorder our equations such 

that all the surplus slack variables are last. Finally, we do special pivots to get a feasible 

solution before we begin pivoting to the optimum solution. 

 

Consider the following problem which has a mixture of ≤ and ≥ relations: 

 
Our old friend simplex\pblmtotab shows us it’s previously unexercised ability to reorder 

and introduce surplus slacks: 

 
Our book, Finite Mathematics, tells us how to select a pivot to progress to a feasible 

solution. We take the -1 in our surplus slack, move to the left to the most distant 

positive cell, then form quotients in that column, select the least and that is our next 

pivot: 



 
That first pivot didn’t get us to a feasible solution so the getpivot suggested another, 

using the same algorithm, which did get us there and also, luckily, also got us the 

optimum solution. 

 

So, with modifications to pblmtotab and getpivot, we can process inequalities with both 

≥ and ≤ relations. 

c. Adding = relations. 

Now our last relation, the = sign. Our book tells us to introduce an “artificial” variable 

which we name ai to distinguish. Our simplex\pblmtotab, not surprisingly, already 

knows how to do that. Consider: 

 
And we know that we must pivot to force all artificial variables to zero before 

considering surplus slack or optimum pivots. Once we determine an artificial isn’t zero, 

the pivot selection is the same process as for surplus slack variables. We find that 

simplex\getpivot is also smarter than we needed in the past. 



 
Actually, it took two pivots to care for the artificial variable but, in the process, we took 

care of the surplus slack variable as well. One more pivot for optimization and we have 

our solution. 

d. Non-standard Minimization Problems. 

We can now solve any combination of maximization problems. Let’s work on getting the 

same power with minimization problems. Our book makes an interesting observation: if 

we were to plot the objective  equation as it attains it’s peak, the negative of that 

attains a valley. And … vice versa. Thus, if we were to take the negation of our objective 

in a minimization process, that would be a maximization process which we know how to 

solve. Could it possibly be that simple? 

 

Guess what our simplex\pblmtotab function already knows how to do: 

 



With that we are off to the races solving a maximization problem: 

 
e. Where we ended! 

We can now solve just about any optimization problem. Maximization, minimization, 

any mixture of ≥, ≤, and = constraints. Just … bring it on! 

 

This does pose an interesting question: with the minimization process we just learned, 

why do we need the dual/shadow solution method that is restricted to Standard 

Maximization/Minimization Problems? Won’t the newly learned process for 

minimization problems work for standard problems as well. The answer is: yes. But … 

not always as well. 

 

Let’s go back to the minimization problem we worked earlier: 

 
Solving this using the dual/shadows method is as follows: 



 
Note that this method needed three pivots. Now use the minimization process learned 

in this section: 

 
Both methods reached the same solution. This method, because of surplus slack 



variables, required six pivots.  

 

When working large problems, potentially hundreds of variables/equations, pivots can 

be very expensive. If a minimization process is within the Standard Minimization 

Problem constraints the dual/shadow process can be significantly more efficient. 

 

  



7. Combined Functions 
This section begins combining functions somewhat obscuring the underlying linear programming 

methods. 

a. Where we are now. 

Up to now our objective has been to support learning Linear Programming from a book 

such as Finite Mathematics. Our functions have been carefully restricted to removing 

burdensome, tedious calculations but, and this is important, none have done anything 

the student cannot do himself. You should go back to each of the functions to this point 

and ask yourself if you could do the calculations using only a TI-84. If not, you should go 

back and review until you can. 

b. Where we are going in this section. 

Now we will orient ourselves more to just getting to the solution. 

c. Simplex\autopivot 

We note that the simplex/getpivot and simplex\pivot usually come in pairs. Let’s 

combine them into a single function that actually does a pivot if appropriate and, if not 

appropriate, returns the reason. The six pivots come a bit easier: 

 
d. Nesting functions 

Notice how frequently the output of one function is the input of another. We could take 



advantage of that. E.g., as follows: 

 
e. Simplex\letitrip (Let-it-rip) 

Look above where we end up repeating autopivots until there are no more to be done. 

Let’s create a function that just starts pivoting and returns the last successful pivot when 

it is appropriate to stop. Our problem now appears as: 

 
The process using dual/shadows is as follows: 



 
We could nest stuff: 

 
f. Simplex\theworks 

The problem in nesting is that life isn’t always pure. The nesting works well assuming 

there is an optimal solution. But it is badly behaved if there is no feasible solution or 

unbounded solutions. It’s best if we surround the nesting with some logic that considers 

anomalies. theWorks function does that. Here it is for a well behaved problem: 



 
And for a problem with no feasible solutions: 

 
And for an unbounded region: 

 
  

 

  



8. Alphabetical Function Listing 
These functions are for the end user and are in the library as public functions. 

a. About() 

This function gives some of the standard data: 

  
b. AutoPivot(tab) 

This function takes a tableau, executes a getpivot and either executes the pivot 

returning the next tableau or returns the message noting why more pivots are not 

appropriate. 

 
c. Dual(pblm) 

This function takes a Standard Maximization/Minimization Problem and returns it’s 



dual. 

 
d. GetPivot(tab) 

This function takes a tableau and returns either the next suggested pivot or a message 

indicating why more pivots are not appropriate. 

 
e. LetItRip(tab) 

This function takes a tableau and performs pivots until no longer appropriate returning 

the last successful pivot. Use a getpivot on the returned tableau to determine the 



reason for terminating the pivot process. 

 
f. NewTab(numVars, numslacks, numArts) 

This function is used for cases where you want to begin with a tableau rather than a 

problem definition. It returns a template tableau to be copied into an assignment 



statement where you edit the ?s to produce a tableau. 

 
g. PblmMax(numVars, numEqns) 

This function will return a template for a maximization problem definition, tailored for 

the stated number of variables and equations. The template can be copied into an 

assignment statement and edited to complete the problem definition. The ?’s may be 



edited for coefficients and the relationship operator changed to ≤, = or ≥. 

 
h. PblmMin(numVars, numEqns) 

This function will return a template for a minimization problem definition, tailored for 

the stated number of variables and equations. The template can be copied into an 

assignment statement and edited to complete the problem definition. The ?’s may be 

edited for coefficients and the relationship operator changed to ≤, = or ≥. 

 
i. PblmToTab(pblm) 

This function will take a problem definition and return an appropriate tableau. It 

converts minimization problems to maximization by negating the objective function. It 

creates regular, surplus and artificial variables as appropriate for the various 



relationships. 

 
j. Pivot(tab, row, col) 

This function accepts a tableau along with the desired pivot row and column. It 

performs the pivot and returns the new tableau. Note that with the header row, row 



numbers will be one larger than expected. 

 
k. Shadows(tab) 

If a problem has been solved via dual\shadows, the solution is in the tableau but 

beneath the slack variables rather than in the rightmost column. This function will 



extract the solution accordingly renaming the slack variables in the process. 

 
l. Solution(tab) 

This function accepts the tableau for a solved problem, extracts and displays the 



solution. 

 
m. TheWorks(pblm) 

This function does it all. It accepts a problem definition, computes the appropriate 

tableau, performs required pivots until a solution is reached, then displays the solution. 

If a problem has no feasible solution or an unbounded solution, it displays a message to 



that effect. 

 
n. Unitize(tab, col) 

This function will unitize a column of the given tableau. It does that by multiplying each 

row by a unitizing constant. This leaves a column containing only 1, -1 or zero. This can 

be useful in computing quotients for a pivot. 

 



  



9. Helper Function Listing 
These functions are not for the end user and are in the library as private functions. Because they 

are not for the end user they are not documented further. 

a. AddSubscript 

b. Feasible 

c. getMsg 

d. IsPblm 

e. IsTableau 

f. MatInsert 

g. NewFunction 

h. PblmNew 

i. PivotToFix 

j. PivotToImprove 

k. PIvotToRow 


