Adventure RPG Development Kit (ADK)

Specification written by Paul Robson 14th- - 15th March 2000.

Last revised 22nd March 2000
Introduction

This document describes a design of a Role Playing Game loosely stylised around the Atari 2600 Console game “Adventure”., but with much more complexity and flexibility This is provided in the form of a development kit ; this allows a variety of games of a similar style to be produced using the same binary code, and the game itself to be edited using a simple GUI editor. The system is designed to run on the TI83, TI83+ and optionally TI82 (fairly simple port),TI85 and TI86 calculators (slightly more complex).

What is “Adventure” ?

Adventure is one of the first “Role Playing” Games. It has no characterisation unlike modern RPGs, but does have a simple plot (collect the Enchanted Chalice). Many of its limitations are down not to a lack of imagination, but to the limitations of the Atari VCS hardware (which are many).

Adventure consists of a collection of single rooms, connected by their edges (i.e. you walk off the side to go into another room). In these rooms are a variety of objects, one of which a player can carry. These have the usual RPG functions such as opening doors. The maze is guarded by a series of multicoloured dragons (which look like ducks), and a bat. If you wish to play “Adventure” this can be done either in its original form using an emulator, or using the pretty accurate PC Port “Indenture” (which is itself extended).

Game Description (Outline)

The game space consists of a series of rooms, up to a maximum of 256, which can be interconnected in any way the developer chooses. Each room is designed using 12 by 8 8 x 8 pixel tiles, which are stored as part of a 255 byte record in a RLE compressed format. There are a maximum of 64 possible different graphic tiles, some of which are reserved. Scenery tiles 0-3 are opened ; the player can walk on them. Tile 4 is the player character. Tile 5 is the monster missile character. Reflection and rotation do not need to be done as these will be done automatically by the program.

Each room has 4 possible exits : North, South, East and West, which can link to another room. There is no requirement for this to make a comprehensible maze ; but it makes the game more irrational if it isn’t.

In each room are scenery (i.e. walls) and three kinds of items :-

1. Monsters: Monsters reappear each time you enter the room. They can be destroyed using a specific object, often requiring more than one hit.

2. Carry Objects : These can be carried about the map and put down anywhere you like. These are carried by the player “in front of him” as he moves, rather like the sword in Zelda.

3. Action Objects : These are tiles which can be operated on by other carried objects. These usually disappear when used, but can have another effect. Only one type of “action object” is permitted in each room. This does not limit the number of action objects, simply that there only be one that behaves in a specific way. The number of action objects is limited by the number of bits in the Static Flag byte (e.g. 8). If you have more than 8 the extras (counted left-right,top-bottom) will refuse to be deleted.

There are four kinds of tile which go to make up each room. These specify the look of the room and the number of monsters and objects and so on which go in there.

Code
Name
Description

00xx xxxx
Scenery

Green
A tile that is part of the scenery, and the player, or monster, cannot cross, except for tiles 0, which is a background tile.

01xx xxxx
Action

Red
A tile representing something that can have an action performed on it. When this is “used” by the carry object an “event” can happen, and the object in question is destroyed.

10xx xxxx
Monster

Yellow
A tile representing a monster. When the room is entered this is converted into a temporary object which then chases the player. This tile is not displayed during the game. As with the action the monster has an associated carry object which is used to bash it, and there is also a “number of hits required” value.

11xx xxxx
Carry

Blue
A tile representing an object that can be picked up and carried. At the beginning of the game this is converted to a “carry object record” and the tile is not displayed during the game. These objects can either be left on the ground, or they can be held or stored in the backpack.

Actions can take place as a result of a successful object event pairing. The actions happen to the “target” object - Nothing happens to the object which is used to perform the action.

Each action tile has an associated static “game state” flag which, when set, stops that object from appearing. The existence of this static flag is checked when the room data is expanded from its compressed state.

Room Data (Uncompressed)

Room data is held uncompressed in the following format. It is normally RLE compressed, except for the first two bytes which must never be compressed. Unused data is all zero.

Offset
Data
Notes

+0
Room Identifier
1-255.

+1
Event Static
Static flag for this event. Zeroed at game start. Bits are allocated on a left-right,top-bottom basis, beginning with Bit 7.

+2
Weapon Required
lower 6 bits identify the object, the other 2 bits are zero.

+3
Hits Required
Same for each monster in the room (1-15) kept in bits 0..3. Bit 4 is fast monsters, bit 5 is firing monsters.

+4
Event Object
Needs to be carried for the action to take place (2 bits zero)

+5
Event Action
Event Action to be taken

+6
North room
Room exits are 00 if no exit is possible.

+7
East room
(same)

+8
South room
(same)

+9
West room
(same)

+10..+105
Tile Map
12 x 8 tile map

+106..+185
Code Area
Messages, Event Code Space etc.

+185..+254
(Reserved)

The actions that can be taken are listed below.

Action ID
Binary
Action

0
0000 0000
Delete object

1
0000 0001
Delete object “rolling up” ; rather like on Adventure’s castle doors

2
0000 0010
Delete object, increase maximum hearts by one.

3
0000 0011
Delete object, increase hearts to maximum

4
0000 0100
Delete Object only if all monsters have been killed

5
0000 0101
No deletion ; just execute event code/messages

16..31
0001 nnnn
Delete object, adjust player hearts by nnnn. (-8 to +7)

32..255

(reserved)

Carry Object Table

At the start of each game the program scans through all the available rooms to build a carry object table. This is a table which has the objects which can be picked up and dropped in the game.

They are detected by looking for tile pattern 11xx xxxx in the room tiles. These tiles are not actually displayed by being in the “current tile map” for the room, but are found by scanning the tile table itself ; they function like “sprites” on top of the game.

Objects can only be placed on the map in a whole tile, which is blank. They are picked up using the “pick up” key. Another key rotates the held objects ; the player can hold a maximum of 8 objects.

The object table has 64 entries, one for each object in the game. Each entry is two bytes in size, and the information is stored as follows :-

Byte
Contents

+0
Contains the room the object is in, or 0 if it is carried by the player, or is not used.

+1
Position within that room. Bits 4..7 hold the vertical position, bits 0..3 the horizontal one.

Additionally, there are two other locations that hold the object currently “in hand” [0 If no object held], and the object held in the backpack [0 if no object]. For both these locations the two most significant bits are zero.

Monster Records

Each time a room is entered, the room data is scanned for “Monster” tiles. A maximum of 8 monsters can be in each room in the game. Each of these is converted into a record in a 4 byte table, which contains the information for the monster. These records are set up as follows.

Offset
Name
Description

+0
Hits
Number of hits left till monster is dead. [0 = no monster].

+1
X
X position in pixels

+2
Y
Y position in pixels

+3
Tile
Tile graphic

The “Number of hits” is the same for every monster in the room, and is copied from the uncompressed room data. There is no requirement for them to have the same tile.

Memory Locations

Memory in the game is arranged as follows. ALL data space is kept after the game engine code ; this is to assist with the limitations of the TI83+
Game Engine (Z80 Program Code)

Game Data Space

Tile Graphics (64 tiles, 512 bytes)

Compressed Room Data

Development

All tiles and maps are edited using a program written in Turbo Pascal. This keeps all the data in raw format as follows :-

TILE.BIN is a 512 byte (64 x 8) file containing the current tile set.

ROOMnnn.ARM is a file containing the data from ROOMnnn (where nnn is 1-255), this is not in the finished format.
When all of these have been completed to the satisfaction of the developer a program BUILDER.EXE compresses all the rooms together into a file called GAMECODE.BIN. This is then concatenated with the Z80 object code and the tile file to produce the final object file. The game engine will, of course, be a different binary for each calculator.

The development editor is a GUI based system written in Turbo Pascal v5.5

Paul Robson, March 2000.
C:\adk\doc\ADKSPEC.DOC
Page 4 of 1

