Adventure RPG Development Kit (ADK)

Specification written by Paul Robson 14th- - 15th March 2000.

Introduction

This document describes a design of a Role Playing Game loosely stylised around the Atari 2600 Console game “Adventure”. This is provided in the form of a development kit ; this allows a variety of games of a similar style to be produced using the same executable. The system is designed to run on the TI83, TI83+ and optionally TI82 (fairly simple port),TI85 and TI86 calculators (slightly more complex).

What is “Adventure” ?

Adventure is one of the first “Role Playing” Games. It has no characterisation unlike modern RPGs, but does have a simple plot (collect the Enchanted Chalice). Many of its limitations are down not to a lack of imagination, but to the limitations of the Atari VCS hardware (which are many).

Adventure consists of a collection of single rooms, connected by their edges (i.e. you walk off the side to go into another room). In these rooms are a variety of objects, one of which a player can carry. These have the usual RPG functions such as opening doors. The maze is guarded by a series of multicoloured dragons (which look like ducks), and a bat. If you wish to play “Adventure” this can be done either in its original form using an emulator, or using the pretty accurate PC Port “Indenture” (which is itself extended).

Whilst the design does allow the production of a game quite similar to Adventure, it does allow a greater degree of complexity. However, the game has been designed in such a way as to allow a non-programmer to develop games for the computer.

Game Description (Outline)

The game space consists of a series of rooms, up to a maximum of 256, which can be interconnected in any way the developer chooses. Each room is designed using 11 by 8 8 x 8 pixel tiles, which are stored in a RLE compressed format. There are a maximum of 64 possible different graphic tiles, one of which is reserved for the player character (tile number 63). Reflection and rotation do not need to be done as these will be done automatically by the program.

Each room has 4 possible exits : North, South, East and West, which can link to another room. There is no requirement for this to make a comprehensible maze.

In each room are three kinds of items :-

1. Monsters: Monsters reappear each time you enter the room. They can be destroyed using a specific object, often requiring more than one hit.

2. Carry Objects : These can be carried about the map and put down anywhere you like. These are carried by the player “in front of him” as he moves, rather like the sword in Zelda.

3. Action Objects : These are tiles which can be operated on by other carried objects. These usually disappear when used, but can have another effect. Only one type of “action object” is permitted in each room. This does not limit the number of action objects, simply that there only be one that behaves in a specific way. The number of action objects is limited by the number of bits in the Static Flag byte (e.g. 8)

There are four kinds of tile which go to make up each room. These specify the look of the room and the number of monsters and objects and so on which go in there.

Code
Name
Description

00xx xxxx
Scenery

Green
A tile that is part of the scenery, and the player, or monster, cannot cross, except for tiles 0, which is a background tile.

01xx xxxx
Action

Red
A tile representing something that can have an action performed on it. When this is “used” by the carry object an “event” can happen, and the object in question is destroyed.

10xx xxxx
Monster

Yellow
A tile representing a monster. When the room is entered this is converted into a temporary object which then chases the player. This tile is not displayed during the game. As with the action the monster has an associated carry object which is used to bash it, and there is also a “number of hits required” value.

11xx xxxx
Carry

Blue
A tile representing an object that can be picked up and carried. At the beginning of the game this is converted to a “carry object record” and the tile is not displayed during the game. These objects can either be left on the ground, or they can be held or stored in the backpack.

Actions can take place as a result of a successful object event pairing. The actions happen to the “target” object - Nothing happens to the object which is used to perform the action.

Each action tile has an associated static “game state” flag which, when set, stops that object from appearing. The existence of this static flag is checked when the room data is expanded from its compressed state.

Room Data (Uncompressed)

Room data is held uncompressed in the following format. It is normally compressed, except for the first two bytes which must never be compressed.

Offset
Data
Notes

+0
Room Identifier
1-255.

+1
Event Static
Static flag for this event. Zeroed at game start. Bits are allocated on a left-right,top-bottom basis, beginning with Bit 7.

+2
Weapon Required
lower 6 bits identify the object, the other 2 bits are zero.

+3
Hits Required
Same for each monster in the room (1-15).

+4
Event Object
Needs to be carried for the action to take place (2 bits zero)

+5
Event Action
Event Action to be taken

+6
North room
Room exits are 00 if no exit is possible.

+7
East room
(same)

+8
South room
(same)

+9
West room
(same)

+10..+98
Tile Map
11 x 8 tile map

The actions that can be taken are listed below.

Action ID
Binary
Action

0
0000 0000
Delete object

1
0000 0001
Delete object “rolling up” ; rather like on Adventure’s castle doors

2
0000 0010
Delete object, increase maximum hearts by one.

3
0000 0011
Delete object, increase hearts to maximum

16..31
0001 nnnn
Delete object, adjust player hearts by nnnn. (-8 to +7)

32..255

(reserved)

Carry Object Table

At the start of each game the program scans through all the available rooms to build a carry object table. This is a table which has the objects which can be picked up and dropped in the game.

They are detected by looking for tile pattern 11xx xxxx in the room tiles. These tiles are not actually displayed by being in the “current tile map” for the room, but are found by scanning the tile table itself ; they function like “sprites” on top of the game.

Objects can only be placed on the map in a whole tile, which is blank. They are picked up using the “pick up” key. Another key switches the object between the hand and the backpack.

The object table has 64 entries, one for each object in the game. Each entry is two bytes in size, and the information is stored as follows :-

Byte
Contents

+0
Contains the room the object is in, or 0 if it is carried by the player, or is not used.

+1
Position within that room. Bits 4..7 hold the vertical position, bits 0..3 the horizontal one.

Additionally, there are two other locations that hold the object currently “in hand” [0 If no object held], and the object held in the backpack [0 if no object]. For both these locations the two most significant bits are zero.

Monster Records

Each time a room is entered, the room data is scanned for “Monster” tiles. A maximum of 8 monsters can be in each room in the game. Each of these is converted into a record in a 4 byte table, which contains the information for the monster. These records are set up as follows.

Offset
Name
Description

+0
Hits
Number of hits left till monster is dead. [0 = no monster].

+1
X
X position in pixels

+2
Y
Y position in pixels

+3
Tile
Tile graphic

The “Number of hits” is the same for every monster in the room, and is copied from the uncompressed room data.

Memory Locations

Memory in the game is arranged as follows

Game Engine (Z80 Program Code)

Game Data Space

Tile Graphics (64 tiles, 512 bytes)

Compressed Room Data

The following memory locations are used to control the game, and the current state of the player. The Background is a copy of the tile table without any of the objects,monster or player items on it.

Name
Bytes
Contents

PlayerRoom
1
ID of the current room the player is in

RoomPtr
2
Pointer to current room (in physical memory)

RoomData
104
Current uncompressed room

PlayerX
1
Position of player in room

PlayerY
1
Position of player in room

PlayerDir
1
Last direction player moved in (0=N,1=E,2=S,3=W)

ObjHold
1
Object held in hand (0 if none)

ObjPack
1
Object held in pack (0 if none)

ObjCarry
128
64 x 2 byte record, current object positions

HP
1
Number of hearts currently

MaxHP
1
Maximum hearts allowed

Monsters
32
8 x 4 byte monster records

TileGfx
512
64 x 8 byte tile graphic entries.

InvalidBgr
1
Non zero if background invalid

Background
768
Copy of screen without player,monster,carry

PlayerTile
8
Player Tile rotated appropriately

CarryTile
8
Player Carried object rotated appropriately

CurrRotate
1
Current rotation (same as Last Direction)

Development

All tiles and maps are edited using a program written in Turbo Pascal. This keeps all the data in raw format as follows :-

TILES.DAT is a 512 byte (64 x 8) file containing the current tile set.

ROOMnnn.DAT is a 104 byte record containing the data from ROOMnnn (where nnn is 1-255)

When all of these have been completed to the satisfaction of the developer a program MKGAME.EXE compresses all the rooms together into a file called GAME.BIN. This is then concatenated with the Z80 object code and the tile file to produce the final object file. The game engine will, of course, be a different binary for each calculator.

 The development tool consists of a split screen ; above is the current room, below is the tiles. The TAB key can be used to switch between the two.

The tile editor/selector pane which allows a tile to be selected or modified. In this pane the tiles can be edited using the arrow keys and space bar, and selected using A..P and 0..7.

The room editor allows the tile to be drawn that is currently selected using the arrow keys and space bar. The following keys are available

· F1
Rotates numbers of monsters 1-8

· F2
Rotates hits required 1-8

· F3
Selects the weapon to be used to kill monsters here.

· F4
Sets the event required object (if any)

· F6
Sets the “event action” value

· F7-10
Set the adjacent room values

Paul Robson, March 2000.

C:\advent\Adventure RPG Development Kit.doc
Page 2 of 5

