
Portable Game Notation Specification and
Implementation Guide

Standard:

Portable Game Notation Specification and Implementation Guide

Revised:

1994.03.12

Authors:

Interested readers of the Internet newsgroup rec.games.chess

Coordinator:

Steven J. Edwards (send comments to sje@world.std.com)

Inhaltsverzeichniss

1. Introduction
2. Chess data representation

1. Data interchange incompatibility
2. Specification goals
3. A sample PGN game

3. Formats: import and export
1. Import format allows for manually prepared data
2. Export format used for program generated output

1. Byte equivalence
2. Archival storage and the newline character
3. Speed of processing
4. Reduced export format

4. Lexicographical issues
1. Character codes
2. Tab characters
3. Line lengths

5. Commentary
6. Escape mechanism

7. Tokens
8. Parsing games

1. Tag pair section
2. Movetext section

1. Movetext line justification
2. Movetext move number indications
3. Movetext SAN (Standard Algebraic Notation)
4. Movetext NAG (Numeric Annotation Glyph)
5. Movetext RAV (Recursive Annotation Variation)
6. Game Termination Markers

9. Supplemental tag names
1. Player related information

1. Tags: WhiteTitle
2. Tags: WhiteElo
3. Tags: WhiteUSCF
4. Tags: WhiteNA
5. Tags: WhiteType

2. Event related information
1. Tag: EventDate
2. Tag: EventSponsor
3. Tag: Section
4. Tag: Stage
5. Tag: Board

3. Opening information (locale specific)
1. Tag: Opening
2. Tag: Variation
3. Tag: SubVariation

4. Opening information (third party vendors)
1. Tag: ECO
2. Tag: NIC

5. Time and date related information
1. Tag: Time
2. Tag: UTCTime
3. Tag:; UTCDate

6. Time control
1. Tag: TimeControl

7. Alternative starting positions
1. Tag: SetUp
2. Tag: FEN

8. Game conclusion
1. Tag: Termination

9. Miscellaneous
1. Tag: Annotator
2. Tag: Mode
3. Tag: PlyCount

10. Numeric Annotation Glyphs
11. File names and directories

1. File name suffix for PGN data

2. File name formation for PGN data for a specific player
3. File name formation for PGN data for a specific event
4. File name formation for PGN data for chronologically ordered games
5. Suggested directory tree organization

12. PGN collating sequence
13. PGN software

1. The SAN Kit
2. pgnRead
3. mail2pgn/GIICS
4. XBoard
5. cupgn
6. Zarkov
7. Chess Assistant
8. BOOKUP
9. HIARCS

10. Deja Vu
11. MV2PGN
12. The Hansen utilities (cb2pgn, nic2pgn, pgn2cb, pgn2nic)
13. Slappy the Database
14. CBASCII
15. ZZZZZZ
16. icsconv
17. CHESSOP (CHESSOPN/CHESSOPG)
18. CAT2PGN
19. pgn2opg

14. PGN data archives
15. International Olympic Committee country codes
16. Additional chess data standards

1. FEN
1. History
2. Uses for a position notation
3. Data fields
4. Piece placement data
5. Active color
6. Castling availability
7. En passant target square
8. Halfmove clock
9. Fullmove number

10. Examples
2. EPD

1. 1 History
2. 2 Uses for an extended position notation
3. Data fields
4. Piece placement data
5. Active color
6. Castling availability
7. En passant target square
8. Operations

9. General format
10. Opcode mnemonics
11. Opcode list
12. Opcode "acn": analysis count: nodes
13. Opcode "acs": analysis count: seconds
14. Opcode "am": avoid move(s)
15. Opcode "bm": best move(s)
16. Opcode "c0": comment (primary, also "c1" though "c9")
17. Opcode "ce": centipawn evaluation
18. Opcode "dm": direct mate fullmove count
19. Opcode "draw_accept": accept a draw offer
20. Opcode "draw_claim": claim a draw
21. Opcode "draw_offer": offer a draw
22. Opcode "draw_reject": reject a draw offer
23. Opcode "eco": _Encyclopedia of Chess Openings_ opening code
24. Opcode "fmvn": fullmove number
25. Opcode "hmvc": halfmove clock
26. Opcode "id": position identification
27. Opcode "nic": _New In Chess_ opening code
28. Opcode "noop": no operation
29. Opcode "pm": predicted move
30. Opcode "pv": predicted variation
31. Opcode "rc": repetition count
32. Opcode "resign": game resignation
33. Opcode "sm": supplied move
34. Opcode "tcgs": telecommunication: game selector
35. Opcode "tcri": telecommunication: receiver identification
36. Opcode "tcsi": telecommunication: sender identification
37. Opcode "v0": variation name (primary, also "v1" though "v9")

17. Alternative chesspiece identifier letters
18. Formal syntax
19. Canonical chess position hash coding
20. Binary representation (PGC)

1. Bytes
2. Move ordinals
3. String data
4. Marker codes

1. Marker 0x01: reduced export format single game
2. Marker 0x02: tag pair
3. Marker 0x03: short move sequence
4. Marker 0x04: long move sequence
5. Marker 0x05: general game data begin
6. Marker 0x06: general game data end
7. Marker 0x07: simple-nag
8. Marker 0x08: rav-begin
9. Marker 0x09: rav-end

10. Marker 0x0a: escape-string
21. E-mail correspondence usage

Preface

From the Tower of Babel story:

"If now, while they are one people, all speaking the same language, they have started
to do this, nothing will later stop them from doing whatever they propose to do."

Genesis XI, v.6

1. Introduction

PGN is "Portable Game Notation", a standard designed for the representation of chess game data
using ASCII text files. PGN is structured for easy reading and writing by human users and for easy
parsing and generation by computer programs. The intent of the definition and propagation of
PGN is to facilitate the sharing of public domain chess game data among chessplayers (both
organic and otherwise), publishers, and computer chess researchers throughout the world.

PGN is not intended to be a general purpose standard that is suitable for every possible use; no
such standard could fill all conceivable requirements. Instead, PGN is proposed as a universal
portable representation for data interchange. The idea is to allow the construction of a family of
chess applications that can quickly and easily process chess game data using PGN for import and
export among themselves.

2. Chess data representation

Computer usage among chessplayers has become quite common in recent years and a variety of
different programs, both commercial and public domain, are used to generate, access, and
propagate chess game data. Some of these programs are rather impressive; most are now well
behaved in that they correctly follow the Laws of Chess and handle users’ data with reasonable
care. Unfortunately, many programs have had serious problems with several aspects of the
external representation of chess game data. Sometimes these problems become more visible when
a user attempts to move significant quantities of data from one program to another; if there has
been no real effort to ensure portability of data, then the chances for a successful transfer are small
at best.

2.1 Data interchange incompatibility

The reasons for format incompatibility are easy to understand. In fact, most of them are correlated
with the same problems that have already been seen with commercial software offerings for other
domains such as word processing, spreadsheets, fonts, and graphics. Sometimes a manufacturer
deliberately designs a data format using encryption or some other secret, proprietary technique to
"lock in" a customer. Sometimes a designer may produce a format that can be deciphered without
too much difficulty, but at the same time publicly discourage third party software by claiming
trade secret protection. Another software producer may develop a non-proprietary system, but it

may work well only within the scope of a single program or application because it is not easily
expandable. Finally, some other software may work very well for many purposes, but it uses
symbols and language not easily understood by people or computers available to those outside the
country of its development.

2.2 Specification goals

A specification for a portable game notation must observe the lessons of history and be able to
handle probable needs of the future. The design criteria for PGN were selected to meet these
needs. These criteria :

1. The details of the system must be publicly available and free of unnecessary complexity.
Ideally, if the documentation is not available for some reason, typical chess software
developers and users should be able to understand most of the data without the need for third
party assistance.

2. The details of the system must be non-proprietary so that users and software developers are
unrestricted by concerns about infringing on intellectual property rights. The idea is to let
chess programmers compete in a free market where customers may choose software based
on their real needs and not based on artificial requirements created by a secret data format.

3. The system must work for a variety of programs. The format should be such that it can be
used by chess database programs, chess publishing programs, chess server programs, and
chessplaying programs without being unnecessarily specific to any particular application
class.

4. The system must be easily expandable and scalable. The expansion ability must handling
data items that may not exist currently but could be expected to emerge in the future.
(Examples: new opening classifications and new country names.) The system should be
scalable in that it must not have any arbitrary restrictions concerning the quantity of stored
data. Also, planned modes of expansion should either preserve earlier databases or at least
allow for their automatic conversion.

5. The system must be international. Chess software users are found in many countries and the
system should be free of difficulties caused by conventions local to a given region.

6. Finally, the system should handle the same kinds and amounts of data that are already
handled by existing chess software and by print media.

2.3 A sample PGN game

Although its description may seem rather lengthy, PGN is actually fairly simple. A sample PGN
game follows; it has most of the important features described in later sections of this document.

[Event "F/S Return Match"]
[Site "Belgrade, Serbia JUG"]
[Date "1992.11.04"]
[Round "29"]
[White "Fischer, Robert J."]
[Black "Spassky, Boris V."]
[Result "1/2-1/2"]
1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6 8. c3
O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15.
Nb1 h6 16. Bh4 c5 17. dxe5 Nxe4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6 21.
Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxe1+ 26. Qxe1 Kxf7
27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6 31. axb4 cxb4 32. Ra5 Nd5 33.
f3 Bc8 34. Kf2 Bf5 35. Ra7 g6 36. Ra6+ Kc5 37. Ke1 Nf4 38. g3 Nxh3 39. Kd2 Kb5

40. Rd6 Kc5 41. Ra6 Nf2 42. g4 Bd3 43. Re6 1/2-1/2

3. Formats: import and export

There are two formats in the PGN specification. These are the "import" format and the "export"
format. These are the two different ways of formatting the same PGN data according to its source.
The details of the two formats are described throughout the following sections of this document.

Other than formats, there is the additional topic of PGN presentation. While both PGN import and
export formats are designed to be readable by humans, there is no recommendation that either of
these be an ultimate mode of chess data presentation. Rather, software developers are urged to
consider all of the various techniques at their disposal to enhance the display of chess data at the
presentation level (i.e., highest level) of their programs. This means that the use of different fonts,
character sizes, color, and other tools of computer aided interaction and publishing should be
explored to provide a high quality presentation appropriate to the function of the particular
program.

3.1 Import format allows for manually prepared data

The import format is rather flexible and is used to describe data that may have been prepared by
hand, much like a source file for a high level programming language. A program that can read
PGN data should be able to handle the somewhat lax import format.

3.2 Export format used for program generated output

The export format is rather strict and is used to describe data that is usually prepared under
program control, something like a pretty printed source program reformatted by a compiler.

3.2.1 Byte equivalence

For a given PGN data file, export format representations generated by different PGN programs on
the same computing system should be exactly equivalent, byte for byte.

3.2.2 Archival storage and the newline character

Export format should also be used for archival storage. Here, "archival" storage is defined as
storage that may be accessed by a variety of computing systems. The only extra requirement for
archival storage is that the newline character have a specific representation that is independent of
its value for a particular computing system’s text file usage. The archival representation of a
newline is the ASCII control character LF (line feed, decimal value 10, hexadecimal value 0x0a).

Sadly, there are some accidents of history that survive to this day that have baroque
representations for a newline: multicharacter sequences, end-of-line record markers, start-of-line
byte counts, fixed length records, and so forth. It is well beyond the scope of the PGN project to
reconcile all of these to the unified world of ANSI C and the those enjoying the bliss of a single
’\n’ convention. Some systems may just not be able to handle an archival PGN text file with native
text editors. In these cases, an indulgence of sorts is granted to use the local newline convention in
non-archival PGN files for those text editors.

3.2.3 Speed of processing

Several parts of the export format deal with exact descriptions of line and field justification that
are absent from the import format details. The main reason for these restrictions on the export
format are to allow the construction of simple data translation programs that can easily scan PGN
data without having to have a full chess engine or other complex parsing routines. The idea is to
encourage chess software authors to always allow for at least a limited PGN reading capability.
Even when a full chess engine parsing capability is available, it is likely to be at least two orders
of magnitude slower than a simple text scanner.

3.2.4 Reduced export format

A PGN game represented using export format is said to be in "reduced export format" if all of the
following hold: 1) it has no commentary, 2) it has only the standard seven tag roster identification
information ("STR", see below), 3) it has no recursive annotation variations ("RAV", see below),
and 4) it has no numeric annotation glyphs ("NAG", see below). Reduced export format is used for
bulk storage of unannotated games. It represents a minimum level of standard conformance for a
PGN exporting application.

4. Lexicographical issues

PGN data is composed of characters; non-overlapping contiguous sequences of characters form
lexical tokens.

4.1 Character codes

PGN data is represented using a subset of the eight bit ISO 8859/1 (Latin 1) character set. ("ISO"
is an acronym for the International Standards Organization.) This set is also known as ECMA-94
and is similar to other ISO Latin character sets. ISO 8859/1 includes the standard seven bit ASCII
character set for the 32 control character code values from zero to 31. The 95 printing character
code values from 32 to 126 are also equivalent to seven bit ASCII usage. (Code value 127, the
ASCII DEL control character, is a graphic character in ISO 8859/1; it is not used for PGN data
representation.)

The 32 ISO 8859/1 code values from 128 to 159 are non-printing control characters. They are not
used for PGN data representation. The 32 code values from 160 to 191 are mostly non-alphabetic
printing characters and their use for PGN data is discouraged as their graphic representation varies
considerably among other ISO Latin sets. Finally, the 64 code values from 192 to 255 are mostly
alphabetic printing characters with various diacritical marks; their use is encouraged for those
languages that require such characters. The graphic representations of this last set of 64 characters
is fairly constant for the ISO Latin family.

Printing character codes outside of the seven bit ASCII range may only appear in string data and in
commentary. They are not permitted for use in symbol construction.

Because some PGN users’ environments may not support presentation of non-ASCII characters,

PGN game authors should refrain from using such characters in critical commentary or string
values in game data that may be referenced in such environments. PGN software authors should
have their programs handle such environments by displaying a question mark ("?") for non-ASCII
character codes. This is an important point because there are many computing systems that can
display eight bit character data, but the display graphics may differ among machines and operating
systems from different manufacturers.

Only four of the ASCII control characters are permitted in PGN import format; these are the
horizontal and vertical tabs along with the linefeed and carriage return codes.

The external representation of the newline character may differ among platforms; this is an
acceptable variation as long as the details of the implementation are hidden from software
implementors and users. When a choice is practical, the Unix "newline is linefeed" convention is
preferred.

4.2 Tab characters

Tab characters, both horizontal and vertical, are not permitted in the export format. This is because
the treatment of tab characters is highly dependent upon the particular software in use on the host
computing system. Also, tab characters may not appear inside of string data.

4.3 Line lengths

PGN data are organized as simple text lines without any special bytes or markers for secondary
record structure imposed by specific operating systems. Import format PGN text lines are limited
to having a maximum of 255 characters per line including the newline character. Lines with 80 or
more printing characters are strongly discouraged because of the difficulties experienced by
common text editors with long lines.

In some cases, very long tag values will require 80 or more columns, but these are relatively rare.
An example of this is the "FEN" tag pair; it may have a long tag value, but this particular tag pair
is only used to represent a game that doesn’t start from the usual initial position.

5. Commentary

Comment text may appear in PGN data. There are two kinds of comments. The first kind is the
"rest of line" comment; this comment type starts with a semicolon character and continues to the
end of the line. The second kind starts with a left brace character and continues to the next right
brace character. Comments cannot appear inside any token.

Brace comments do not nest; a left brace character appearing in a brace comment loses its special
meaning and is ignored. A semicolon appearing inside of a brace comment loses its special
meaning and is ignored. Braces appearing inside of a semicolon comments lose their special
meaning and are ignored.

*** Export format representation of comments needs definition work.

6. Escape mechanism

There is a special escape mechanism for PGN data. This mechanism is triggered by a percent sign
character ("%") appearing in the first column of a line; the data on the rest of the line is ignored by
publicly available PGN scanning software. This escape convention is intended for the private use
of software developers and researchers to embed non-PGN commands and data in PGN streams.

A percent sign appearing in any other place other than the first position in a line does not trigger
the escape mechanism.

7. Tokens

PGN character data is organized as tokens. A token is a contiguous sequence of characters that
represents a basic semantic unit. Tokens may be separated from adjacent tokens by white space
characters. (White space characters space, newline, and tab characters.) Some tokens are self
delimiting and do not require white space characters.

A string token is a sequence of zero or more printing characters delimited by a pair of quote
characters (ASCII decimal value 34, hexadecimal value 0x22). An empty string is represented by
two adjacent quotes. (Note: an apostrophe is not a quote.) A quote inside a string is represented by
the backslash immediately followed by a quote. A backslash inside a string is represented by two
adjacent backslashes. Strings are commonly used as tag pair values (see below). Non-printing
characters like newline and tab are not permitted inside of strings. A string token is terminated by
its closing quote. Currently, a string is limited to a maximum of 255 characters of data.

An integer token is a sequence of one or more decimal digit characters. It is a special case of the
more general "symbol" token class described below. Integer tokens are used to help represent
move number indications (see below). An integer token is terminated just prior to the first
non-symbol character following the integer digit sequence.

A period character (".") is a token by itself. It is used for move number indications (see below). It
is self terminating.

An asterisk character ("*") is a token by itself. It is used as one of the possible game termination
markers (see below); it indicates an incomplete game or a game with an unknown or otherwise
unavailable result. It is self terminating.

The left and right bracket characters ("[" and "]") are tokens. They are used to delimit tag pairs
(see below). Both are self terminating.

The left and right parenthesis characters ("(" and ")") are tokens. They are used to delimit
Recursive Annotation Variations (see below). Both are self terminating.

The left and right angle bracket characters ("<" and ">") are tokens. They are reserved for future
expansion. Both are self terminating.

A Numeric Annotation Glyph ("NAG", see below) is a token; it is composed of a dollar sign

character ("$") immediately followed by one or more digit characters. It is terminated just prior to
the first non-digit character following the digit sequence.

A symbol token starts with a letter or digit character and is immediately followed by a sequence of
zero or more symbol continuation characters. These continuation characters are letter characters
("A-Za-z"), digit characters ("0-9"), the underscore ("_"), the plus sign ("+"), the octothorpe sign
("#"), the equal sign ("="), the colon (":"), and the hyphen ("-"). Symbols are used for a variety of
purposes. All characters in a symbol are significant. A symbol token is terminated just prior to the
first non-symbol character following the symbol character sequence. Currently, a symbol is limited
to a maximum of 255 characters in length.

8. Parsing games

A PGN database file is a sequential collection of zero or more PGN games. An empty file is a
valid, although somewhat uninformative, PGN database.

A PGN game is composed of two sections. The first is the tag pair section and the second is the
movetext section. The tag pair section provides information that identifies the game by defining
the values associated with a set of standard parameters. The movetext section gives the usually
enumerated and possibly annotated moves of the game along with the concluding game
termination marker. The chess moves themselves are represented using SAN (Standard Algebraic
Notation), also described later in this document.

8.1 Tag pair section

The tag pair section is composed of a series of zero or more tag pairs.

A tag pair is composed of four consecutive tokens: a left bracket token, a symbol token, a string
token, and a right bracket token. The symbol token is the tag name and the string token is the tag
value associated with the tag name. (There is a standard set of tag names and semantics described
below.) The same tag name should not appear more than once in a tag pair section.

A further restriction on tag names is that they are composed exclusively of letters, digits, and the
underscore character. This is done to facilitate mapping of tag names into key and attribute names
for use with general purpose database programs.

For PGN import format, there may be zero or more white space characters between any adjacent
pair of tokens in a tag pair.

For PGN export format, there are no white space characters between the left bracket and the tag
name, there are no white space characters between the tag value and the right bracket, and there is
a single space character between the tag name and the tag value.

Tag names, like all symbols, are case sensitive. All tag names used for archival storage begin with
an upper case letter.

PGN import format may have multiple tag pairs on the same line and may even have a tag pair

spanning more than a single line. Export format requires each tag pair to appear left justified on a
line by itself; a single empty line follows the last tag pair.

Some tag values may be composed of a sequence of items. For example, a consultation game may
have more than one player for a given side. When this occurs, the single character ":" (colon)
appears between adjacent items. Because of this use as an internal separator in strings, the colon
should not otherwise appear in a string.

The tag pair format is designed for expansion; initially only strings are allowed as tag pair values.
Tag value formats associated with the STR (Seven Tag Roster, see below) will not change; they
will always be string values. However, there are long term plans to allow general list structures as
tag values for non-STR tag pairs. Use of these expanded tag values will likely be restricted to
special research programs. In all events, the top level structure of a tag pair remains the same: left
bracket, tag name, tag value, and right bracket.

8.1.1 Seven Tag Roster

There is a set of tags defined for mandatory use for archival storage of PGN data. This is the STR
(Seven Tag Roster). The interpretation of these tags is fixed as is the order in which they appear.
Although the definition and use of additional tag names and semantics is permitted and
encouraged when needed, the STR is the common ground that all programs should follow for
public data interchange.

For import format, the order of tag pairs is not important. For export format, the STR tag pairs
appear before any other tag pairs. (The STR tag pairs must also appear in order; this order is
described below). Also for export format, any additional tag pairs appear in ASCII order by tag
name.

The seven tag names of the STR are (in order):
1. Event (the name of the tournament or match event)
2. Site (the location of the event)
3. Date (the starting date of the game)
4. Round (the playing round ordinal of the game)
5. White (the player of the white pieces)
6. Black (the player of the black pieces)
7. Result (the result of the game)

A set of supplemental tag names is given later in this document.

For PGN export format, a single blank line appears after the last of the tag pairs to conclude the
tag pair section. This helps simple scanning programs to quickly determine the end of the tag pair
section and the beginning of the movetext section. The Event tag value should be reasonably
descriptive. Abbreviations are to be avoided unless absolutely necessary. A consistent event
naming should be used to help facilitate database scanning. If the name of the event is unknown, a
single question mark should appear as the tag value.

Examples:

[Event "FIDE World Championship"]
[Event "Moscow City Championship"]
[Event "ACM North American Computer Championship"]
[Event "Casual Game"]

The Site tag value should city and region names along with a standard name for the country. The
use of the IOC (International Olympic Committee) three letter names is suggested for those
countries where such codes are available. If the site of the event is unknown, a single question
mark should appear as the tag value. A comma may be used to separate a city from a region. No
comma is needed to separate a city or region from the IOC country code. A later section of this
document gives a list of three letter nation codes along with a few additions for "locations" not
covered by the IOC.

Examples:

[Site "New York City, NY USA"]
[Site "St. Petersburg RUS"]
[Site "Riga LAT"]

The Date tag value gives the starting date for the game. (Note: this is not necessarily the same as
the starting date for the event.) The date is given with respect to the local time of the site given in
the Event tag. The Date tag value field always uses a standard ten character format:
"YYYY.MM.DD". The first four characters are digits that give the year, the next character is a
period, the next two characters are digits that give the month, the next character is a period, and
the final two characters are digits that give the day of the month. If the any of the digit fields are
not known, then question marks are used in place of the digits.

Examples:

[Date "1992.08.31"]
[Date "1993.??.??"]
[Date "2001.01.01"]

The Round tag value gives the playing round for the game. In a match competition, this value is
the number of the game played. If the use of a round number is inappropriate, then the field should
be a single hyphen character. If the round is unknown, a single question mark should appear as the
tag value. Some organizers employ unusual round designations and have multipart playing rounds
and sometimes even have conditional rounds. In these cases, a multipart round identifier can be
made from a sequence of integer round numbers separated by periods. The leftmost integer
represents the most significant round and succeeding integers represent round numbers in
descending hierarchical order.

Examples:

[Round "1"]
[Round "3.1"]
[Round "4.1.2"]

The White tag value is the name of the player or players of the white pieces. The names are given
as they would appear in a telephone directory. The family or last name appears first. If a first name
or first initial is available, it is separated from the family name by a comma and a space. Finally,
one or more middle initials may appear. (Wherever a comma appears, the very next character

should be a space. Wherever an initial appears, the very next character should be a period.) If the
name is unknown, a single question mark should appear as the tag value.

The intent is to allow meaningful ASCII sorting of the tag value that is independent of regional
name formation customs. If more than one person is playing the white pieces, the names are listed
in alphabetical order and are separated by the colon character between adjacent entries. A player
who is also a computer program should have appropriate version information listed after the name
of the program.

The format used in the FIDE Rating Lists is appropriate for use for player name tags.

Examples:

[White "Tal, Mikhail N."]
[White "van der Wiel, Johan"]
[White "Acme Pawngrabber v.3.2"]
[White "Fine, R."]

The Black tag value is the name of the player or players of the black pieces. The names are given
here as they are for the White tag value.

Examples:

[Black "Lasker, Emmanuel"]
[Black "Smyslov, Vasily V."]
[Black "Smith, John Q.:Woodpusher 2000"]
[Black "Morphy"]

The Result field value is the result of the game. It is always exactly the same as the game
termination marker that concludes the associated movetext. It is always one of four possible
values: "1-0" (White wins), "0-1" (Black wins), "1/2-1/2" (drawn game), and "*" (game still in
progress, game abandoned, or result otherwise unknown). Note that the digit zero is used in both
of the first two cases; not the letter "O".

All possible examples:

[Result "0-1"]
[Result "1-0"]
[Result "1/2-1/2"]
[Result "*"]

8.2 Movetext section

The movetext section is composed of chess moves, move number indications, optional
annotations, and a single concluding game termination marker.

Because illegal moves are not real chess moves, they are not permitted in PGN movetext. They
may appear in commentary, however. One would hope that illegal moves are relatively rare in
games worthy of recording.

8.2.1 Movetext line justification

In PGN import format, tokens in the movetext do not require any specific line justification.

In PGN export format, tokens in the movetext are placed left justified on successive text lines each
of which has less than 80 printing characters. As many tokens as possible are placed on a line with
the remainder appearing on successive lines. A single space character appears between any two
adjacent symbol tokens on the same line in the movetext. As with the tag pair section, a single
empty line follows the last line of data to conclude the movetext section.

Neither the first or the last character on an export format PGN line is a space. (This may change in
the case of commentary; this area is currently under development.)

8.2.2 Movetext move number indications

A move number indication is composed of one or more adjacent digits (an integer token) followed
by zero or more periods. The integer portion of the indication gives the move number of the
immediately following white move (if present) and also the immediately following black move (if
present). PGN import format does not require move number indications. It does not prohibit
superfluous move number indications anywhere in the movetext as long as the move numbers are
correct.

PGN import format move number indications may have zero or more period characters following
the digit sequence that gives the move number; one or more white space characters may appear
between the digit sequence and the period(s). There are two export format move number indication
formats, one for use appearing immediately before a white move element and one for use
appearing immediately before a black move element. A white move number indication is formed
from the integer giving the fullmove number with a single period character appended. A black
move number indication is formed from the integer giving the fullmove number with three period
characters appended.

All white move elements have a preceding move number indication. A black move element has a
preceding move number indication only in two cases: first, if there is intervening annotation or
commentary between the black move and the previous white move; and second, if there is no
previous white move in the special case where a game starts from a position where Black is the
active player.

There are no other cases where move number indications appear in PGN export format.

8.2.3 Movetext SAN (Standard Algebraic Notation)

SAN (Standard Algebraic Notation) is a representation standard for chess moves using the ASCII
Latin alphabet.

Examples of SAN recorded games are found throughout most modern chess publications. SAN as
presented in this document uses English language single character abbreviations for chess pieces,
although this is easily changed in the source. English is chosen over other languages because it
appears to be the most widely recognized.

An alternative to SAN is FAN (Figurine Algebraic Notation). FAN uses miniature piece icons

instead of single letter piece abbreviations. The two notations are otherwise identical. SAN
identifies each of the sixty four squares on the chessboard with a unique two character name. The
first character of a square identifier is the file of the square; a file is a column of eight squares
designated by a single lower case letter from "a" (leftmost or queenside) up to and including "h"
(rightmost or kingside). The second character of a square identifier is the rank of the square; a rank
is a row of eight squares designated by a single digit from "1" (bottom side [White’s first rank]) up
to and including "8" (top side [Black’s first rank]). The initial squares of some pieces are: white
queen rook at a1, white king at e1, black queen knight pawn at b7, and black king rook at h8. SAN
identifies each piece by a single upper case letter. The standard English values: pawn = "P", knight
= "N", bishop = "B", rook = "R", queen = "Q", and king = "K".

The letter code for a pawn is not used for SAN moves in PGN export format movetext. However,
some PGN import software disambiguation code may allow for the appearance of pawn letter
codes. Also, pawn and other piece letter codes are needed for use in some tag pair and annotation
constructs.

It is admittedly a bit chauvinistic to select English piece letters over those from other languages.
There is a slight justification in that English is a de facto universal second language among most
chessplayers and program users. It is probably the best that can be done for now. A later section of
this document gives alternative piece letters, but these should be used only for local presentation
software and not for archival storage or for dynamic interchange among programs. A basic SAN
move is given by listing the moving piece letter (omitted for pawns) followed by the destination
square. Capture moves are denoted by the lower case letter "x" immediately prior to the
destination square; pawn captures the file letter of the originating square of the capturing pawn
immediately prior to the "x" character.

SAN kingside castling is indicated by the sequence "O-O"; queenside castling is indicated by the
sequence "O-O-O". Note that the upper case letter "O" is used, not the digit zero. The use of a zero
character is not only incompatible with traditional text practices, but it can also confuse parsing
algorithms which also have to understand about move numbers and game termination markers.
Also note that the use of the letter "O" is consistent with the practice of having all chess move
symbols start with a letter; also, it follows the convention that all non-pawn move symbols start
with an upper case letter.

En passant captures do not have any special notation; they are formed as if the captured pawn were
on the capturing pawn’s destination square. Pawn promotions are denoted by the equal sign "="
immediately following the destination square with a promoted piece letter (indicating one of
knight, bishop, rook, or queen) immediately following the equal sign. As above, the piece letter is
in upper case. In the case of ambiguities (multiple pieces of the same type moving to the same
square), the first appropriate disambiguating step of the three following steps is taken:

First, if the moving pieces can be distinguished by their originating files, the originating file letter
of the moving piece is inserted immediately after the moving piece letter.

Second (when the first step fails), if the moving pieces can be distinguished by their originating
ranks, the originating rank digit of the moving piece is inserted immediately after the moving piece
letter.

Third (when both the first and the second steps fail), the two character square coordinate of the
originating square of the moving piece is inserted immediately after the moving piece letter.

Note that the above disambiguation is needed only to distinguish among moves of the same piece
type to the same square; it is not used to distinguish among attacks of the same piece type to the
same square. An example of this would be a position with two white knights, one on square c3 and
one on square g1 and a vacant square e2 with White to move. Both knights attack square e2, and if
both could legally move there, then a file disambiguation is needed; the (nonchecking) knight
moves would be "Nce2" and "Nge2". However, if the white king were at square e1 and a black
bishop were at square b4 with a vacant square d2 (thus an absolute pin of the white knight at
square c3), then only one white knight (the one at square g1) could move to square e2: "Ne2". If
the move is a checking move, the plus sign "+" is appended as a suffix to the basic SAN move
notation; if the move is a checkmating move, the octothorpe sign "#" is appended instead.

Neither the appearance nor the absence of either a check or checkmating indicator is used for
disambiguation purposes. This means that if two (or more) pieces of the same type can move to the
same square the differences in checking status of the moves does not allieviate the need for the
standard rank and file disabiguation described above. (Note that a difference in checking status for
the above may occur only in the case of a discovered check.)

Neither the checking or checkmating indicators are considered annotation as they do not
communicate subjective information. Therefore, they are qualitatively different from move suffix
annotations like "!" and "?". Subjective move annotations are handled using Numeric Annotation
Glyphs as described in a later section of this document.

There are no special markings used for double checks or discovered checks.

There are no special markings used for drawing moves. SAN moves can be as short as two
characters (e.g., "d4"), or as long as seven characters (e.g., "Qa6xb7#", "fxg1=Q+"). The average
SAN move length seen in realistic games is probably just fractionally longer than three characters.
If the SAN rules seem complicated, be assured that the earlier notation systems of LEN (Long
English Notation) and EDN (English Descriptive Notation) are much more complex, and that LAN
(Long Algebraic Notation, the predecessor of SAN) is unnecessarily bulky. PGN export format
always uses the above canonical SAN to represent moves in the movetext section of a PGN game.
Import format is somewhat more relaxed and it makes allowances for moves that do not conform
exactly to the canonical format. However, these allowances may differ among different PGN
reader programs. Only data appearing in export format is in all cases guaranteed to be importable
into all PGN readers.

There are a number of suggested guidelines for use with implementing PGN reader software for
permitting non-canonical SAN move representation. The idea is to have a PGN reader apply
various transformations to attempt to discover the move that is represented by non-canonical input.
Some suggested transformations : letter case remapping, capture indicator insertion, check
indicator insertion, and checkmate indicator insertion. Import format PGN allows for the use of
traditional suffix annotations for moves. There are exactly six such annotations available: "!", "?",
"!!", "!?", "?!", and "??". At most one such suffix annotation may appear per move, and if present,
it is always the last part of the move symbol.

When exported, a move suffix annotation is translated into the corresponding Numeric Annotation
Glyph as described in a later section of this document. For example, if the single move symbol
"Qxa8?" appears in an import format PGN movetext, it would be replaced with the two adjacent
symbols "Qxa8 $2".

8.2.4 Movetext NAG (Numeric Annotation Glyph)

An NAG (Numeric Annotation Glyph) is a movetext element that is used to indicate a simple
annotation in a language independent manner. An NAG is formed from a dollar sign ("$") with a
non-negative decimal integer suffix. The non-negative integer must be from zero to 255 in value.

8.2.5 Movetext RAV (Recursive Annotation Variation)

An RAV (Recursive Annotation Variation) is a sequence of movetext containing one or more
moves enclosed in parentheses. An RAV is used to represent an alternative variation. The alternate
move sequence given by an RAV is one that may be legally played by first unplaying the move
that appears immediately prior to the RAV. Because the RAV is a recursive construct, it may be
nested.

*** The specification for import/export representation of RAV elements needs further
development.

8.2.6 Game Termination Markers

Each movetext section has exactly one game termination marker; the marker always occurs as the
last element in the movetext. The game termination marker is a symbol that is one of the following
four values: "1-0" (White wins), "0-1" (Black wins), "1/2-1/2" (drawn game), and "*" (game in
progress, result unknown, or game abandoned). Note that the digit zero is used in the above; not
the upper case letter "O". The game termination marker appearing in the movetext of a game must
match the value of the game’s Result tag pair. (While the marker appears as a string in the Result
tag, it appears as a symbol without quotes in the movetext.)

9. Supplemental tag names

The following tag names and their associated semantics are recommended for use for information
not contained in the Seven Tag Roster.

9.1 Player related information

Note that if there is more than one player field in an instance of a player (White or Black) tag, then
there will be corresponding multiple fields in any of the following tags. For example, if the White
tag has the three field value "Jones:Smith:Zacharias" (a consultation game), then the WhiteTitle
tag could have a value of "IM:-:GM" if Jones was an International Master, Smith was untitled, and
Zacharias was a Grandmaster.

9.1.1 Tags: WhiteTitle

These use string values such as "FM", "IM", and "GM"; these tags are used only for the standard
abbreviations for FIDE titles. A value of "-" is used for an untitled player.

9.1.2 Tags: WhiteElo

These tags use integer values; these are used for FIDE Elo ratings. A value of "-" is used for an
unrated player.

9.1.3 Tags: WhiteUSCF

These tags use integer values; these are used for USCF (United States Chess Federation) ratings.
Similar tag names can be constructed for other rating agencies.

9.1.4 Tags: WhiteNA

These tags use string values; these are the e-mail or network addresses of the players. A value of
"-" is used for a player without an electronic address.

9.1.5 Tags: WhiteType

These tags use string values; these describe the player types. The value "human" should be used
for a person while the value "program" should be used for algorithmic (computer) players.

9.2 Event related information

The following tags are used for providing additional information about the event.

9.2.1 Tag: EventDate

This uses a date value, similar to the Date tag field, that gives the starting date of the Event.

9.2.2 Tag: EventSponsor

This uses a string value giving the name of the sponsor of the event.

9.2.3 Tag: Section

This uses a string; this is used for the playing section of a tournament (e.g., "Open" or "Reserve").

9.2.4 Tag: Stage

This uses a string; this is used for the stage of a multistage event (e.g., "Preliminary" or
"Semifinal").

9.2.5 Tag: Board

This uses an integer; this identifies the board number in a team event and also in a simultaneous
exhibition.

9.3 Opening information (locale specific)

The following tag pairs are used for traditional opening names. The associated tag values will vary
according to the local language in use.

9.3.1 Tag: Opening

This uses a string; this is used for the traditional opening name. This will vary by locale. This tag
pair is associated with the use of the EPD opcode "v0" described in a later section of this
document.

9.3.2 Tag: Variation

This uses a string; this is used to further refine the Opening tag. This will vary by locale. This tag
pair is associated with the use of the EPD opcode "v1" described in a later section of this
document.

9.3.3 Tag: SubVariation

This uses a string; this is used to further refine the Variation tag. This will vary by locale. This tag
pair is associated with the use of the EPD opcode "v2" described in a later section of this
document.

9.4 Opening information (third party vendors)

The following tag pairs are used for representing opening identification according to various third
party vendors and organizations. References to these organizations does not imply any
endorsement of them or any endorsement by them.

9.4.1 Tag: ECO

This uses a string of either the form "XDD" or the form "XDD/DD" where the "X" is a letter from
"A" to "E" and the "D" positions are digits; this is used for an opening designation from the five
volume _Encyclopedia of Chess Openings_. This tag pair is associated with the use of the EPD
opcode "eco" described in a later section of this document.

9.4.2 Tag: NIC

This uses a string; this is used for an opening designation from the _New in Chess_ database. This
tag pair is associated with the use of the EPD opcode "nic" described in a later section of this
document.

9.5 Time and date related information

The following tags assist with further refinement of the time and data information associated with
a game.

9.5.1 Tag: Time

This uses a time-of-day value in the form "HH:MM:SS"; similar to the Date tag except that it
denotes the local clock time (hours, minutes, and seconds) of the start of the game. Note that
colons, not periods, are used for field separators for the Time tag value. The value is taken from
the local time corresponding to the location given in the Site tag pair.

9.5.2 Tag: UTCTime

This tag is similar to the Time tag except that the time is given according to the Universal
Coordinated Time standard.

9.5.3 Tag:; UTCDate

This tag is similar to the Date tag except that the date is given according to the Universal
Coordinated Time standard.

9.6 Time control

The follwing tag is used to help describe the time control used with the game.

9.6.1 Tag: TimeControl

This uses a list of one or more time control fields. Each field contains a descriptor for each time
control period; if more than one descriptor is present then they are separated by the colon character
(":"). The descriptors appear in the order in which they are used in the game. The last field
appearing is considered to be implicitly repeated for further control periods as needed.

There are six kinds of TimeControl fields.

The first kind is a single question mark ("?") which means that the time control mode is unknown.
When used, it is usually the only descriptor present.

The second kind is a single hyphen ("-") which means that there was no time control mode in use.
When used, it is usually the only descriptor present.

The third Time control field kind is formed as two positive integers separated by a solidus ("/")
character. The first integer is the number of moves in the period and the second is the number of
seconds in the period. Thus, a time control period of 40 moves in 2 1/2 hours would be represented
as "40/9000".

The fourth TimeControl field kind is used for a "sudden death" control period. It should only be
used for the last descriptor in a TimeControl tag value. It is sometimes the only descriptor present.
The format consists of a single integer that gives the number of seconds in the period. Thus, a blitz
game would be represented with a TimeControl tag value of "300".

The fifth TimeControl field kind is used for an "incremental" control period. It should only be used
for the last descriptor in a TimeControl tag value and is usually the only descriptor in the value.

The format consists of two positive integers separated by a plus sign ("+") character. The first
integer gives the minimum number of seconds allocated for the period and the second integer
gives the number of extra seconds added after each move is made. So, an incremental time control
of 90 minutes plus one extra minute per move would be given by "4500+60" in the TimeControl
tag value.

The sixth TimeControl field kind is used for a "sandclock" or "hourglass" control period. It should
only be used for the last descriptor in a TimeControl tag value and is usually the only descriptor in
the value. The format consists of an asterisk ("*") immediately followed by a positive integer. The
integer gives the total number of seconds in the sandclock period. The time control is implemented
as if a sandclock were set at the start of the period with an equal amount of sand in each of the two
chambers and the players invert the sandclock after each move with a time forfeit indicated by an
empty upper chamber. Electronic implementation of a physical sandclock may be used. An
example sandclock specification for a common three minute egg timer sandclock would have a tag
value of "*180".

Additional TimeControl field kinds will be defined as necessary.

9.7 Alternative starting positions

There are two tags defined for assistance with describing games that did not start from the usual
initial array.

9.7.1 Tag: SetUp

This tag takes an integer that denotes the "set-up" status of the game. A value of "0" indicates that
the game has started from the usual initial array. A value of "1" indicates that the game started
from a set-up position; this position is given in the "FEN" tag pair. This tag must appear for a
game starting with a set-up position. If it appears with a tag value of "1", a FEN tag pair must also
appear.

9.7.2 Tag: FEN

This tag uses a string that gives the Forsyth-Edwards Notation for the starting position used in the
game. FEN is described in a later section of this document. If a SetUp tag appears with a tag value
of "1", the FEN tag pair is also required.

9.8 Game conclusion

There is a single tag that discusses the conclusion of the game.

9.8.1 Tag: Termination

This takes a string that describes the reason for the conclusion of the game. While the Result tag
gives the result of the game, it does not provide any extra information and so the Termination tag
is defined for this purpose.

Strings that may appear as Termination tag values:

"abandoned": abandoned game.
"adjudication": result due to third party adjudication process.
"death": losing player called to greater things, one hopes.
"emergency": game concluded due to unforeseen circumstances.
"normal": game terminated in a normal fashion.
"rules infraction": administrative forfeit due to losing player’s failure to observe either the
Laws of Chess or the event regulations.
"time forfeit": loss due to losing player’s failure to meet time control requirements.
"unterminated": game not terminated.

9.9 Miscellaneous

These are tags that can be briefly described and that doon’t fit well inother sections.

9.9.1 Tag: Annotator

This tag uses a name or names in the format of the player name tags; this identifies the annotator
or annotators of the game.

9.9.2 Tag: Mode

This uses a string that gives the playing mode of the game. Examples: "OTB" (over the board),
"PM" (paper mail), "EM" (electronic mail), "ICS" (Internet Chess Server), and "TC" (general
telecommunication).

9.9.3 Tag: PlyCount

This tag takes a single integer that gives the number of ply (moves) in the game.

10. Numeric Annotation Glyphs

NAG zero is used for a null annotation; it is provided for the convenience of software designers as
a placeholder value and should probably not be used in external PGN data.

NAGs with values from 1 to 9 annotate the move just played.

NAGs with values from 10 to 135 modify the current position.

NAGs with values from 136 to 139 describe time pressure.

Other NAG values are reserved for future definition.

Note: the number assignments listed below should be considered preliminary in nature; they are
likely to be changed as a result of reviewer feedback. White has poor piece coordination
NAG Interpretation
0 null annotation
1 good move (traditional "!")

2 poor move (traditional "?")
3 very good move (traditional "!!")
4 very poor move (traditional "??")
5 speculative move (traditional "!?")
6 questionable move (traditional "?!")
7 forced move (all others lose quickly)
8 singular move (no reasonable alternatives)
9 worst move
10 drawish position
11 equal chances, quiet position
12 equal chances, active position
13 unclear position
14 White has a slight advantage
15 Black has a slight advantage
16 White has a moderate advantage
17 Black has a moderate advantage
18 White has a decisive advantage
19 Black has a decisive advantage
20 White has a crushing advantage (Black should resign)
21 Black has a crushing advantage (White should resign)
22 White is in zugzwang
23 Black is in zugzwang
24 White has a slight space advantage
25 Black has a slight space advantage
26 White has a moderate space advantage
27 Black has a moderate space advantage
28 White has a decisive space advantage
29 Black has a decisive space advantage
30 White has a slight time (development) advantage
31 Black has a slight time (development) advantage
32 White has a moderate time (development) advantage
33 Black has a moderate time (development) advantage
34 White has a decisive time (development) advantage
35 Black has a decisive time (development) advantage
36 White has the initiative
37 Black has the initiative
38 White has a lasting initiative
39 Black has a lasting initiative
40 White has the attack
41 Black has the attack
42 White has insufficient compensation for material deficit
43 Black has insufficient compensation for material deficit

44 White has sufficient compensation for material deficit
45 Black has sufficient compensation for material deficit
46 White has more than adequate compensation for material deficit
47 Black has more than adequate compensation for material deficit
48 White has a slight center control advantage
49 Black has a slight center control advantage
50 White has a moderate center control advantage
51 Black has a moderate center control advantage
52 White has a decisive center control advantage
53 Black has a decisive center control advantage
54 White has a slight kingside control advantage
55 Black has a slight kingside control advantage
56 White has a moderate kingside control advantage
57 Black has a moderate kingside control advantage
58 White has a decisive kingside control advantage
59 Black has a decisive kingside control advantage
60 White has a slight queenside control advantage
61 Black has a slight queenside control advantage
62 White has a moderate queenside control advantage
63 Black has a moderate queenside control advantage
64 White has a decisive queenside control advantage
65 Black has a decisive queenside control advantage
66 White has a vulnerable first rank
67 Black has a vulnerable first rank
68 White has a well protected first rank
69 Black has a well protected first rank
70 White has a poorly protected king
71 Black has a poorly protected king
72 White has a well protected king
73 Black has a well protected king
74 White has a poorly placed king
75 Black has a poorly placed king
76 White has a well placed king
77 Black has a well placed king
78 White has a very weak pawn structure
79 Black has a very weak pawn structure
80 White has a moderately weak pawn structure
81 Black has a moderately weak pawn structure
82 White has a moderately strong pawn structure
83 Black has a moderately strong pawn structure
84 White has a very strong pawn structure
85 Black has a very strong pawn structure

86 White has poor knight placement
87 Black has poor knight placement
88 White has good knight placement
89 Black has good knight placement
90 White has poor bishop placement
91 Black has poor bishop placement
92 White has good bishop placement
93 Black has good bishop placement
84 White has poor rook placement
85 Black has poor rook placement
86 White has good rook placement
87 Black has good rook placement
98 White has poor queen placement
99 Black has poor queen placement
100 White has good queen placement
101 Black has good queen placement
102
103 Black has poor piece coordination
104 White has good piece coordination
105 Black has good piece coordination
106 White has played the opening very poorly
107 Black has played the opening very poorly
108 White has played the opening poorly
109 Black has played the opening poorly
110 White has played the opening well
111 Black has played the opening well
112 White has played the opening very well
113 Black has played the opening very well
114 White has played the middlegame very poorly
115 Black has played the middlegame very poorly
116 White has played the middlegame poorly
117 Black has played the middlegame poorly
118 White has played the middlegame well
119 Black has played the middlegame well
120 White has played the middlegame very well
121 Black has played the middlegame very well
122 White has played the ending very poorly
123 Black has played the ending very poorly
124 White has played the ending poorly
125 Black has played the ending poorly
126 White has played the ending well
127 Black has played the ending well

128 White has played the ending very well
129 Black has played the ending very well
130 White has slight counterplay
131 Black has slight counterplay
132 White has moderate counterplay
133 Black has moderate counterplay
134 White has decisive counterplay
135 Black has decisive counterplay
136 White has moderate time control pressure
137 Black has moderate time control pressure
138 White has severe time control pressure
139 Black has severe time control pressure

11. File names and directories

File names chosen for PGN data should be both informative and portable. The directory names and
arrangements should also be chosen for the same reasons and also for ease of navigation. Some of
suggested file and directory names may be difficult or impossible to represent on certain
computing systems. Use of appropriate conversion customs is encouraged.

11.1 File name suffix for PGN data

The use of the file suffix ".pgn" is encouraged for ASCII text files containing PGN data.

11.2 File name formation for PGN data for a specific player

PGN games for a specific player should have a file name consisting of the player’s last name
followed by the ".pgn" suffix.

11.3 File name formation for PGN data for a specific event

PGN games for a specific event should have a file name consisting of the event’s name followed
by the ".pgn" suffix.

11.4 File name formation for PGN data for chronologically ordered games

PGN data files used for chronologically ordered (oldest first) archives use date information as file
name root strings. A file containing all the PGN games for a given year would have an eight
character name in the format "YYYY.pgn". A file containing PGN data for a given month would
have a ten character name in the format "YYYYMM.pgn". Finally, a file for PGN games for a
single day would have a twelve character name in the format "YYYYMMDD.pgn". Large files are
split into smaller files as needed.

As game files are commonly arranged by chronological order, games with missing or incomplete
Date tag pair data are to be avoided. Any question mark characters in a Date tag value will be

treated as zero digits for collation within a file and also for file naming.

Large quantities of PGN data arranged by chronological order should be organized into
hierarchical directories. A directory containing all PGN data for a given year would have a four
character name in the format "YYYY"; directories containing PGN files for a given month would
have a six character name in the format "YYYYMM".

11.5 Suggested directory tree organization

A suggested directory arrangement for ftp sites and CD-ROM distributions:

PGN master directory of the PGN subtree
(pub/chess/Game-Databases/PGN)

PGN/Events directory of PGN files, each for a specific event
PGN/Events/News news and status of the event collection
PGN/Events/ReadMe brief description of the local directory contents
PGN/MGR directory of the Master Games Repository subtree
PGN/MGR/News news and status of the entire PGN/MGR subtree
PGN/MGR/ReadMe brief description of the local directory contents
PGN/MGR/YYYY directory of games or subtrees for the year YYYY
PGN/MGR/YYYY/ReadMe description of local directory for year YYYY
PGN/MGR/YYYY/News news and status for year YYYY data
PGN/News news and status of the entire PGN subtree
PGN/Players directory of PGN files, each for a specific player
PGN/Players/News news and status of the player collection
PGN/Players/ReadMe brief description of the local directory contents
PGN/ReadMe brief description of the local directory contents
PGN/Standard the PGN standard (this document)
PGN/Tools software utilities that access PGN data

12. PGN collating sequence

There is a standard sorting order for PGN games within a file. This collation is based on eight
keys; these are the seven tag values of the STR and also the movetext itself.

The first (most important, primary key) is the Date tag. Earlier dated games appear prior to games
played at a later date. This field is sorted by ascending numeric value first with the year, then the
month, and finally the day of the month. Query characters used for unknown date digit values will
be treated as zero digit characters for ordering comparison.

The second key is the Event tag. This is sorted in ascending ASCII order.

The third key is the Site tag. This is sorted in ascending ASCII order.

The fourth key is the Round tag. This is sorted in ascending numeric order based on the value of
the integer used to denote the playing round. A query or hyphen used for the round is ordered

before any integer value. A query character is ordered before a hyphen character.

The fifth key is the White tag. This is sorted in ascending ASCII order.

The sixth key is the Black tag. This is sorted in ascending ASCII order.

The seventh key is the Result tag. This is sorted in ascending ASCII order.

The eighth key is the movetext itself. This is sorted in ascending ASCII order with the entire text
including spaces and newline characters.

13. PGN software

This section describes some PGN software that is either currently available or expected to be
available in the near future. The entries are presented in rough chronological order of their being
made known to the PGN standard coordinator. Authors of PGN capable software are encouraged
to contact the coordinator (e-mail address listed near the start of this document) so that the
information may be included here in this section.

In addition to the PGN standard, there are two more chess standards of interest to the chess
software community. These are the FEN standard (Forsyth-Edwards Notation) for position
notation and the EPD standard (Extended Position Description) for comprehensive position
description for automated interprogram processing. These are described in a later section of this
document.

Some PGN software is freeware and can be gotten from ftp sites and other sources. Other PGN
software is payware and appears as part of commercial chessplaying programs and chess database
managers. Those who are interested in the propagation of the PGN standard are encouraged to
support manufacturers of chess software that use the standard. If a particular vendor does not offer
PGN compatibility, it is likely that a few letters to them along with a copy of this specification
may help them decide to PGN support in their next release.

The staff at the University of Oklahoma at Norman (USA) have graciously provided an ftp site
chess.uoknor.edu for the storage of chess related data and programs. Because file names change
over time, those accessing the site are encouraged to first retrieve the file "pub/chess/ls-lR.gz" for
a current listing. A scan of this listing will also help locate versions of PGN programs for machine
types and operating systems other than those listed below. Further information about this archive
can be gotten from its administrator, Chris Petroff chris@uoknor.edu.

For European users, the kind staff at the University of Hamburg (Germany) have provided the ftp
site ftp.math.uni-hamburg.de; this carries a daily mirror of the pub/chess directory at the
chess.uoknor.edu site.

13.1 The SAN Kit

The "SAN Kit" is an ANSI C source chess programming toolkit available for free from the ftp site
chess.uoknor.edu in the directory pub/chess/Unix as the file "SAN.tar.gz" (a gzip tar archive). This

kit contains code for PGN import and export and can be used to "regularize" PGN data into
reduced export format by use of its "tfgg" command. The SAN Kit also supports FEN I/O. Code
from this kit is freely redistributable for anyone as long as future distribution is unhindered for
everyone. The SAN Kit is undergoing continuous development, although dates of future deliveries
are quite difficult to predict and releases sometimes appear months apart. Suggestions and
comments should be directed to its author, Steven J. Edwards sje@world.std.com.

13.2 pgnRead

The program "pgnRead" runs under MS Windows 3.1 and provides an interactive graphical user
interface for scanning PGN data files. This program includes a colorful figurine chessboard
display and scrolling controls for game and game text selection. It is available from the
chess.uoknor.edu ftp site in the pub/chess/DOS directory; several versions are available with
names of the form "pgnrd**.exe"; the latest at this writing is "PGNRD130.EXE". Suggestions and
comments should be directed to its author, Keith Fuller keithfx@aol.com.

13.3 mail2pgn/GIICS

The program "mail2pgn" produces a PGN version of chess game data generated by the ICS
(Internet Chess Server). It can be found at the chess.uoknor.edu ftp site in the pub/chess/DOS
directory as the file "mail2pgn.zip" A C language version is in the directory pub/chess/Unix as the
file "mail2pgn.c". Suggestions and comments should be directed to its author, John Aronson
aronson@helios.ece.arizona.edu. This code has been reportedly incorporated into the GIICS
(Graphical Interface for the ICS); suggestions and comments should be directed to its author, Tony
Acero ace3@midway.uchicago.edu.

There is a report that mail2pgn has been superseded by the newer program "MV2PGN" described
below.

13.4 XBoard

"XBoard" is a comprehensive chess utility running under the X Window System that provides a
graphical user interface in a portable manner. A new version now handles PGN data. It is available
from the chess.uoknor.edu ftp site in the pub/chess/X directory as the file "xboard-3.0.pl9.tar.gz".
Suggestions and comments should be directed to its author, Tim Mann mann@src.dec.com.

13.5 cupgn

The program "cupgn" converts game data stored in the ChessBase format into PGN. It is available
from the chess.uoknor.edu ftp site in the pub/chess/Game-Databases/CBUFF directory as the file
"cupgn.tar.gz". Another version is in the directory pub/chess/DOS as the file "cupgn120.exe".
Suggestions and comments should be directed to its author, Anjo Anjewierden
anjo@swi.psy.uva.nl.

13.6 Zarkov

The current version (3.0) of the commercial chessplaying program "Zarkov" can read and write

games using PGN. This program can also use the EPD standard for communication with other
EPD capable programs. Historically, Zarkov is the very first program to use EPD. Suggestions and
comments should be directed to its author, John Stanback jhs@icbdfcs1.fc.hp.com.

A vendor for North America is:

 International Chess Enterprises
 P.O. Box 19457
 Seattle, WA 98109
 USA
 (800) 262-4277

A vendor for Europe is:

 Gambit-Soft
 Feckenhauser Strasse 27
 D-78628 Rottweil
 GERMANY
 49-741-21573

13.7 Chess Assistant

The upcoming version of the multifunction commercial database program "Chess Assistant" will
be able to use the PGN standard as an import and export option. There is a report of a freeware
program, "PGN2CA", that will convert PGN databases into Chess Assistant format. For more
information, the contact is Victor Zakharov, one of the members of the Chess Assistant
development team VICTOR@ldis.cs.msu.su.

A vendor for North America is:

 International Chess Enterprises
 P.O. Box 19457
 Seattle, WA 98109
 USA
 (800) 262-4277

13.8 BOOKUP

The MS-DOS edition of the multifunction commercial program BOOKUP, version 8.1, is able to
use the EPD standard for communication with other EPD capable programs. It may also be PGN
capable as well.

The BOOKUP 8.1.1 Addenda notes dated 1993.12.17 provide comprehensive information on how
to use EPD in conjunction with "analyst" programs such as Zarkov and HIARCS. Specifically, the
search and evaluation abilities of an analyst program are combined with the information
organization abilities of the BOOKUP database program to provide position scoring. This is done
by first having BOOKUP export a database in EPD format, then having an analyst program
annotate each EPD record with a numeric score, and then having BOOKUP import the changed
EPD file. BOOKUP can then apply minimaxing to the imported database; this results in scores
from terminal positions being propagated back to earlier positions and even back to moves from
the starting array.

For some reason, BOOKUP calls this process "backsolving", but it’s really just standard
minimaxing. In any case, it’s a good example of how different programs from different authors
performing different types of tasks can be integrated by use of a common, non-proprietary
standard. This allows for a new set of powerful features that are beyond the capabilities of any one
of the individual component programs.

BOOKUP allows for some customizing of EPD actions. One such customization is to require the
positional evaluations to follow the EPD standard; this means that the score is always given from
the viewpoint of the active player. This is explained more fully in the section on the "ce"
(centipawn evaluation) opcode in the EPD description in a later section of this document. To
ensure that BOOKUP handles the centipawn evaluations in the "right" way, the EPD setting
"Positive for White" must be set to "N". This makes BOOKUP work correctly with Zarkov and
with all other programs that use the "right" centipawn evaluation convention. There is an apparent
problem with HIARCS that requires this option to be set to "Y"; but this really means that, if true,
HIARCS needs to be adjusted to use the "right" centipawn evaluation convention.

A vendor in North America is:

 BOOKUP
 2763 Kensington Place West
 Columbus, OH 43202
 USA
 (800) 949-5445
 (614) 263-7219

13.9 HIARCS

The current version (2.1) of the commercial chessplaying program "HIARCS" is able to use the
EPD standard for communication with other EPD capable programs. It may also be PGN capable
as well. More details will appear here as they become available. A vendor in North America is:

 HIARCS
 c/o BOOKUP
 2763 Kensington Place West
 Columbus, OH 43202
 USA
 (800) 949-5445
 (614) 263-7219

13.10 Deja Vu

The chess database "Deja Vu" from ChessWorks is a PGN compatible collection of over 300,000
games. It is available only on CD-ROM and is scheduled for release in 1994.05 with periodic
revisions thereafter. The introductory price is US$329. For further information, the authors are
John Crayton and Eric Schiller and they can be contacted via e-mail chesswks@netcom.com.

13.11 MV2PGN

The program "MV2PGN" can be used to convert game data generated by both current and older
versions of the GIICS (Graphical Interface - Internet Chess Server). The program is included in the
self extracting archive available from chess.uoknor.edu in the directory pub/chess/DOS as the file

"ics2pgn.exe". Source code is also included. This program is reported to supersede the older
"mail2pgn" and was needed due to a change in ICS recording format in late 1993. For further
information about MV2PGN, the contact person is Gary Bastin gbastin@x102a.ess.harris.com.

13.12 The Hansen utilities (cb2pgn, nic2pgn, pgn2cb, pgn2nic)

The Hansen utilities are used to convert among various chess data representation formats. The
PGN related programs : "cb2pgn.exe" (convert ChessBase to PGN), "nic2pgn.exe" (convert NIC
to PGN), "pgn2cb.exe" (convert PGN to ChessBase), and "pgn2nic.exe" (convert PGN to NIC).

The ChessBase related utilities (cb2pgn/pgn2cb) are found at chess.uoknor.edu in the
pub/chess/Game-Databases/ChessBase directory.

The NIC related utilities (nic2pgn/pgn2nic) are found at chess.uoknor.edu in the
pub/chess/Game-Databases/NIC directory.

For further information about the Hansen utilities, the contact person is the author, Carsten Hansen
ch0506@hdc.hha.dk.

13.13 Slappy the Database

"Slappy the Database" is a commercial chess database and translation program scheduled for
release no sooner than late 1994. It is a low cost utility with a simple character interface intended
for those who want a supported product but who do not need (or cannot afford) a comprehensive,
feature-laden program with a graphical user interface. Slappy’s two most important features are its
batch processing ability and its full implementation of each and every standard described in this
document. Versions of Slappy the Database will be provided for various platforms including: Intel
386/486 Unix, Apple Macintosh, and MS-DOS.

Slappy may also be useful to those who have a full feature program who also need to run time
consuming chess database tasks on a spare computer.

Suggestions and comments should be directed to its author, Steven J. Edwards sje@world.std.com.
More details will appear here as they become available.

13.14 CBASCII

"CBASCII" is a general utility for converting chess data between ChessBase format and ASCII
representations. It has PGN capability, and it is available from the chess.uoknor.edu ftp site in the
pub/chess/DOS directory as the file "cba1_2.zip". The contact person is the program’s author,
Andy Duplain duplain@btcs.bt.co.uk.

13.15 ZZZZZZ

"ZZZZZZ" is a chessplaying program, complete with source, that also includes some database
functions. A recent version is reported to have both PGN and EPD capabilities. It is available from
the chess.uoknor.edu ftp site in the pub/chess/Unix directory as the file "zzzzzz-3.2b1.tar.gz". The

contact person is its author, Gijsbert Wiesenecker wiesenecker@sara.nl.

13.16 icsconv

The program "icsconv" can be used to convert Internet Chess Server games, both old and new
format, to PGN. It is available from the chess.uoknor.edu site in the
pub/chess/Game-Databases/PGN/Tools directory as the file "icsconv.exe". The contact person is
the author, Kevin Nomura chow@netcom.com.

13.17 CHESSOP (CHESSOPN/CHESSOPG)

CHESSOP is an openings database and viewing tool with support for reading PGN games. It runs
under MS-DOS and displays positions rather than games. For each position, both good and bad
moves are listed with appropriate annotation. Transpositions are handled as well. The distributed
database contains over 100,000 positions covering all the common openings. Users can feed in
their own PGN data as well. CHESSOP takes 3 Mbyte of hard disk, costs US$39 and can be
obtained from:

 CHESSX Software
 12 Bluebell Close
 Glenmore Park
 AUSTRALIA 2745.

The ideas behind CHESSOP can be seen in CHESSOPN (alias CHESSOPG), a free version on the
ICS server which has a reduced openings database (25,000 positions) and no PGN or transposition
support but is otherwise the same as CHESSOP. (These are the files "chessopg.zip" in the
directory pub/chess/DOS at the chess.uoknor.edu ftp site.)

13.18 CAT2PGN

The program "CAT2PGN" is a utility that translates data from the format used by Chess Assistant
into PGN. It is available from the chess.uoknor.edu ftp site. The contact person for CAT2PGN is
its author, David Myers myers@frodo.biochem.duke.edu.

13.19 pgn2opg

The utility "pgn2opg" can be used to convert PGN files into a text format used by the
"CHESSOPG" program mentioned above. Although it does not perform any semantic analysis on
PGN input, it has been demonstrated to handle known correct PGN input properly. The file can be
found in the pub/chess/PGN/Tools directory at the chess.uoknor.edu ftp site. For more
information, the author is David Barnes djb@ukc.ac.uk.

14. PGN data archives

The primary PGN data archive repository is located at the ftp site chess.uoknor.edu as the
directory "pub/chess/Game-Databases/PGN". It is organized according to the description given in
section C.5 of this document. The European site ftp.math.uni-hamburg.de is also reported to carry
a regularly updated copy of the repository.

15. International Olympic Committee country codes

International Olympic Committee country codes are employed for Site nation information because
of their traditional use with the reporting of international sporting events. Due to changes in
geography and linguistic custom, some of the following may be incorrect or outdated. Corrections
and extensions should be sent via e-mail to the PGN coordinator whose address listed near the start
of this document.

AFG: Afghanistan
AIR: Aboard aircraft
ALB: Albania
ALG: Algeria
AND: Andorra
ANG: Angola
ANT: Antigua
ARG: Argentina
ARM: Armenia
ATA: Antarctica
AUS: Australia
AZB: Azerbaijan
BAN: Bangladesh
BAR: Bahrain
BHM: Bahamas
BEL: Belgium
BER: Bermuda
BIH: Bosnia and Herzegovina
BLA: Belarus
BLG: Bulgaria
BLZ: Belize
BOL: Bolivia
BRB: Barbados
BRS: Brazil
BRU: Brunei
BSW: Botswana
CAN: Canada
CHI: Chile
COL: Columbia
CRA: Costa Rica
CRO: Croatia
CSR: Czechoslovakia
CUB: Cuba
CYP: Cyprus
DEN: Denmark
DOM: Dominican Republic
ECU: Ecuador
EGY: Egypt
ENG: England
ESP: Spain
EST: Estonia
FAI: Faroe Islands
FIJ: Fiji
FIN: Finland
FRA: France
GAM: Gambia
GCI: Guernsey-Jersey
GEO: Georgia
GER: Germany
GHA: Ghana

GRC: Greece
GUA: Guatemala
GUY: Guyana
HAI: Haiti
HKG: Hong Kong
HON: Honduras
HUN: Hungary
IND: India
IRL: Ireland
IRN: Iran
IRQ: Iraq
ISD: Iceland
ISR: Israel
ITA: Italy
IVO: Ivory Coast
JAM: Jamaica
JAP: Japan
JRD: Jordan
JUG: Yugoslavia
KAZ: Kazakhstan
KEN: Kenya
KIR: Kyrgyzstan
KUW: Kuwait
LAT: Latvia
LEB: Lebanon
LIB: Libya
LIC: Liechtenstein
LTU: Lithuania
LUX: Luxembourg
MAL: Malaysia
MAU: Mauritania
MEX: Mexico
MLI: Mali
MLT: Malta
MNC: Monaco
MOL: Moldova
MON: Mongolia
MOZ: Mozambique
MRC: Morocco
MRT: Mauritius
MYN: Myanmar
NCG: Nicaragua
NET: The Internet
NIG: Nigeria
NLA: Netherlands Antilles
NLD: Netherlands
NOR: Norway
NZD: New Zealand
OST: Austria
PAK: Pakistan
PAL: Palestine
PAN: Panama
PAR: Paraguay
PER: Peru
PHI: Philippines
PNG: Papua New Guinea
POL: Poland
POR: Portugal
PRC: People’s Republic of China
PRO: Puerto Rico
QTR: Qatar

RIN: Indonesia
ROM: Romania
RUS: Russia
SAF: South Africa
SAL: El Salvador
SCO: Scotland
SEA: At Sea
SEN: Senegal
SEY: Seychelles
SIP: Singapore
SLV: Slovenia
SMA: San Marino
SPC: Aboard spacecraft
SRI: Sri Lanka
SUD: Sudan
SUR: Surinam
SVE: Sweden
SWZ: Switzerland
SYR: Syria
TAI: Thailand
TMT: Turkmenistan
TRK: Turkey
TTO: Trinidad and Tobago
TUN: Tunisia
UAE: United Arab Emirates
UGA: Uganda
UKR: Ukraine
UNK: Unknown
URU: Uruguay
USA: United States of America
UZB: Uzbekistan
VEN: Venezuela
VGB: British Virgin Islands
VIE: Vietnam
VUS: U.S. Virgin Islands
WLS: Wales
YEM: Yemen
YUG: Yugoslavia
ZAM: Zambia
ZIM: Zimbabwe
ZRE: Zaire

16. Additional chess data standards

While PGN is used for game storage, there are other data representation standards for other chess
related purposes. Two important standards are FEN and EPD, both described in this section.

16.1 FEN

FEN is "Forsyth-Edwards Notation"; it is a standard for describing chess positions using the
ASCII character set.

A single FEN record uses one text line of variable length composed of six data fields. The first
four fields of the FEN specification are the same as the first four fields of the EPD specification.

A text file composed exclusively of FEN data records should have a file name with the suffix

".fen".

16.1.1 History

FEN is based on a 19th century standard for position recording designed by the Scotsman David
Forsyth, a newspaper journalist. The original Forsyth standard has been slightly extended for use
with chess software by Steven Edwards with assistance from commentators on the Internet. This
new standard, FEN, was first implemented in Edwards’ SAN Kit.

16.1.2 Uses for a position notation

Having a standard position notation is particularly important for chess programmers as it allows
them to share position databases. For example, there exist standard position notation databases
with many of the classical benchmark tests for chessplaying programs, and by using a common
position notation format many hours of tedious data entry can be saved. Additionally, a position
notation can be useful for page layout programs and for confirming position status for e-mail
competition.

Many interesting chess problem sets represented using FEN can be found at the chess.uoknor.edu
ftp site in the directory pub/chess/SAN_testsuites.

16.1.3 Data fields

FEN specifies the piece placement, the active color, the castling availability, the en passant target
square, the halfmove clock, and the fullmove number. These can all fit on a single text line in an
easily read format. The length of a FEN position description varies somewhat according to the
position. In some cases, the description could be eighty or more characters in length and so may
not fit conveniently on some displays. However, these positions aren’t too common.

A FEN description has six fields. Each field is composed only of non-blank printing ASCII
characters. Adjacent fields are separated by a single ASCII space character.

16.1.4 Piece placement data

The first field represents the placement of the pieces on the board. The board contents are
specified starting with the eighth rank and ending with the first rank. For each rank, the squares are
specified from file a to file h. White pieces are identified by uppercase SAN piece letters
("PNBRQK") and black pieces are identified by lowercase SAN piece letters ("pnbrqk"). Empty
squares are represented by the digits one through eight; the digit used represents the count of
contiguous empty squares along a rank. A solidus character "/" is used to separate data of adjacent
ranks.

16.1.5 Active color

The second field represents the active color. A lower case "w" is used if White is to move; a lower
case "b" is used if Black is the active player.

16.1.6 Castling availability

The third field represents castling availability. This indicates potential future castling that may of
may not be possible at the moment due to blocking pieces or enemy attacks. If there is no castling
availability for either side, the single character symbol "-" is used. Otherwise, a combination of
from one to four characters are present. If White has kingside castling availability, the uppercase
letter "K" appears. If White has queenside castling availability, the uppercase letter "Q" appears. If
Black has kingside castling availability, the lowercase letter "k" appears. If Black has queenside
castling availability, then the lowercase letter "q" appears. Those letters which appear will be
ordered first uppercase before lowercase and second kingside before queenside. There is no white
space between the letters.

16.1.7 En passant target square

The fourth field is the en passant target square. If there is no en passant target square then the
single character symbol "-" appears. If there is an en passant target square then is represented by a
lowercase file character immediately followed by a rank digit. Obviously, the rank digit will be "3"
following a white pawn double advance (Black is the active color) or else be the digit "6" after a
black pawn double advance (White being the active color).

An en passant target square is given if and only if the last move was a pawn advance of two
squares. Therefore, an en passant target square field may have a square name even if there is no
pawn of the opposing side that may immediately execute the en passant capture.

16.1.8 Halfmove clock

The fifth field is a nonnegative integer representing the halfmove clock. This number is the count
of halfmoves (or ply) since the last pawn advance or capturing move. This value is used for the
fifty move draw rule.

16.1.9 Fullmove number

The sixth and last field is a positive integer that gives the fullmove number. This will have the
value "1" for the first move of a game for both White and Black. It is incremented by one
immediately after each move by Black.

16.1.10 Examples

Here’s the FEN for the starting position:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1

And after the move 1. e4:

rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1

And then after 1. ... c5:

rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2

And then after 2. Nf3:

rnbqkbnr/pp1ppppp/8/2p5/4P3/5N2/PPPP1PPP/RNBQKB1R b KQkq - 1 2

For two kings on their home squares and a white pawn on e2 (White to move) with thirty eight full
moves played with five halfmoves since the last pawn move or capture:

4k3/8/8/8/8/8/4P3/4K3 w - - 5 39

16.2 EPD

EPD is "Extended Position Description"; it is a standard for describing chess positions along with
an extended set of structured attribute values using the ASCII character set. It is intended for data
and command interchange among chessplaying programs. It is also intended for the representation
of portable opening library repositories.

A single EPD uses one text line of variable length composed of four data field followed by zero or
more operations. The four fields of the EPD specification are the same as the first four fields of the
FEN specification.

A text file composed exclusively of EPD data records should have a file name with the suffix
".epd".

16.2.1 History

EPD is based in part on the earlier FEN standard; it has added extensions for use with opening
library preparation and also for general data and command interchange among advanced chess
programs. EPD was developed by John Stanback and Steven Edwards; its first implementation is
in Stanback’s master strength chessplaying program Zarkov.

16.2.2 Uses for an extended position notation

Like FEN, EPD can also be used for general position description. However, unlike FEN, EPD is
designed to be expandable by the addition of new operations that provide new functionality as
needs arise.

Many interesting chess problem sets represented using EPD can be found at the chess.uoknor.edu
ftp site in the directory pub/chess/SAN_testsuites.

16.2.3 Data fields

EPD specifies the piece placement, the active color, the castling availability, and the en passant
target square of a position. These can all fit on a single text line in an easily read format. The
length of an EPD position description varies somewhat according to the position and any
associated operations. In some cases, the description could be eighty or more characters in length
and so may not fit conveniently on some displays. However, most EPD descriptions pass among
programs only and these are not usually seen by program users.

(Note: due to the likelihood of future expansion of EPD, implementors are encouraged to have
their programs handle EPD text lines of up to 1024 characters long.)

Each EPD data field is composed only of non-blank printing ASCII characters. Adjacent data
fields are separated by a single ASCII space character.

16.2.4 Piece placement data

The first field represents the placement of the pieces on the board. The board contents are
specified starting with the eighth rank and ending with the first rank. For each rank, the squares are
specified from file a to file h. White pieces are identified by uppercase SAN piece letters
("PNBRQK") and black pieces are identified by lowercase SAN piece letters ("pnbrqk"). Empty
squares are represented by the digits one through eight; the digit used represents the count of
contiguous empty squares along a rank. A solidus character "/" is used to separate data of adjacent
ranks.

16.2.5 Active color

The second field represents the active color. A lower case "w" is used if White is to move; a lower
case "b" is used if Black is the active player.

16.2.6 Castling availability

The third field represents castling availability. This indicates potential future castling that may or
may not be possible at the moment due to blocking pieces or enemy attacks. If there is no castling
availability for either side, the single character symbol "-" is used. Otherwise, a combination of
from one to four characters are present. If White has kingside castling availability, the uppercase
letter "K" appears. If White has queenside castling availability, the uppercase letter "Q" appears. If
Black has kingside castling availability, the lowercase letter "k" appears. If Black has queenside
castling availability, then the lowercase letter "q" appears. Those letters which appear will be
ordered first uppercase before lowercase and second kingside before queenside. There is no white
space between the letters.

16.2.7 En passant target square

The fourth field is the en passant target square. If there is no en passant target square then the
single character symbol "-" appears. If there is an en passant target square then is represented by a
lowercase file character immediately followed by a rank digit. Obviously, the rank digit will be "3"
following a white pawn double advance (Black is the active color) or else be the digit "6" after a
black pawn double advance (White being the active color).

An en passant target square is given if and only if the last move was a pawn advance of two
squares. Therefore, an en passant target square field may have a square name even if there is no
pawn of the opposing side that may immediately execute the en passant capture.

16.2.8 Operations

An EPD operation is composed of an opcode followed by zero or more operands and is concluded
by a semicolon.

Multiple operations are separated by a single space character. If there is at least one operation

present in an EPD line, it is separated from the last (fourth) data field by a single space character.

16.2.9 General format

An opcode is an identifier that starts with a letter character and may be followed by up to fourteen
more characters. Each additional character may be a letter or a digit or the underscore character.

An operand is either a set of contiguous non-white space printing characters or a string. A string is
a set of contiguous printing characters delimited by a quote character at each end. A string value
must have less than 256 bytes of data.

If at least one operand is present in an operation, there is a single space between the opcode and
the first operand. If more than one operand is present in an operation, there is a single blank
character between every two adjacent operands. If there are no operands, a semicolon character is
appended to the opcode to mark the end of the operation. If any operands appear, the last operand
has an appended semicolon that marks the end of the operation.

Any given opcode appears at most once per EPD record. Multiple operations in a single EPD
record should appear in ASCII order of their opcode names (mnemonics). However, a program
reading EPD records may allow for operations not in ASCII order by opcode mnemonics; the
semantics are the same in either case.

Some opcodes that allow for more than one operand may have special ordering requirements for
the operands. For example, the "pv" (predicted variation) opcode requires its operands (moves) to
appear in the order in which they would be played. All other opcodes that allow for more than one
operand should have operands appearing in ASCII order. An example of the latter set is the "bm"
(best move[s]) opcode; its operands are moves that are all immediately playable from the current
position.

Some opcodes require one or more operands that are chess moves. These moves should be
represented using SAN. If a different representation is used, there is no guarantee that the EPD
will be read correctly during subsequent processing.

Some opcodes require one or more operands that are integers. Some opcodes may require that an
integer operand must be within a given range; the details are described in the opcode list given
below. A negative integer is formed with a hyphen (minus sign) preceding the integer digit
sequence. An optional plus sign may be used for indicating a non-negative value, but such use is
not required and is indeed discouraged.

Some opcodes require one or more operands that are floating point numbers. Some opcodes may
require that a floating point operand must be within a given range; the details are described in the
opcode list given below. A floating point operand is constructed from an optional sign character
("+" or "-"), a digit sequence (with at least one digit), a radix point (always "."), and a final digit
sequence (with at least one digit).

16.2.10 Opcode mnemonics

An opcode mnemonic used for archival storage and for interprogram communication starts with a

lower case letter and is composed of only lower case letters, digits, and the underscore character
(i.e., no upper case letters). These mnemonics will also all be at least two characters in length.

Opcode mnemonics used only by a single program or an experimental suite of programs should
start with an upper case letter. This is so they may be easily distinguished should they be
inadvertently be encountered by other programs. When a such a "private" opcode be demonstrated
to be widely useful, it should be brought into the official list (appearing below) in a lower case
form.

If a given program does not recognize a particular opcode, that operation is simply ignored; it is
not signaled as an error.

16.2.11 Opcode list

The opcodes are listed here in ASCII order of their mnemonics. Suggestions for new opcodes
should be sent to the PGN standard coordinator listed near the start of this document.

16.2.12 Opcode "acn": analysis count: nodes

The opcode "acn" takes a single non-negative integer operand. It is used to represent the number
of nodes examined in an analysis. Note that the value may be quite large for some extended
searches and so use of (at least) a long (four byte) representation is suggested.

16.2.13 Opcode "acs": analysis count: seconds

The opcode "acs" takes a single non-negative integer operand. It is used to represent the number of
seconds used for an analysis. Note that the value may be quite large for some extended searches
and so use of (at least) a long (four byte) representation is suggested.

16.2.14 Opcode "am": avoid move(s)

The opcode "am" indicates a set of zero or more moves, all immediately playable from the current
position, that are to be avoided in the opinion of the EPD writer. Each operand is a SAN move;
they appear in ASCII order.

16.2.15 Opcode "bm": best move(s)

The opcode "bm" indicates a set of zero or more moves, all immediately playable from the current
position, that are judged to the best available by the EPD writer. Each operand is a SAN move;
they appear in ASCII order.

16.2.16 Opcode "c0": comment (primary, also "c1" though "c9")

The opcode "c0" (lower case letter "c", digit character zero) indicates a top level comment that
applies to the given position. It is the first of ten ranked comments, each of which has a mnemonic
formed from the lower case letter "c" followed by a single decimal digit. Each of these opcodes
takes either a single string operand or no operand at all.

This ten member comment family of opcodes is intended for use as descriptive commentary for a
complete game or game fragment. The usual processing of these opcodes are as follows:

1. At the beginning of a game (or game fragment), a move sequence scanning program
initializes each element of its set of ten comment string registers to be null.

2. As the EPD record for each position in the game is processed, the comment operations are
interpreted from left to right. (Actually, all operations in n EPD record are interpreted from
left to right.) Because operations appear in ASCII order according to their opcode
mnemonics, opcode "c0" (if present) will be handled prior to all other opcodes, then opcode
"c1" (if present), and so forth until opcode "c9" (if present).

3. The processing of opcode "cN" (0 <= N <= 9) involves two steps. First, all comment string
registers with an index equal to or greater than N are set to null. (This is the set "cN" though
"c9".) Second, and only if a string operand is present, the value of the corresponding
comment string register is set equal to the string operand.

16.2.17 Opcode "ce": centipawn evaluation

The opcode "ce" indicates the evaluation of the indicated position in centipawn units. It takes a
single operand, an optionally signed integer that gives an evaluation of the position from the
viewpoint of the active player; i.e., the player with the move. Positive values indicate a position
favorable to the moving player while negative values indicate a position favorable to the passive
player; i.e., the player without the move. A centipawn evaluation value close to zero indicates a
neutral positional evaluation.

Values are restricted to integers that are equal to or greater than -32767 and are less than or equal
to 32766.

A value greater than 32000 indicates the availability of a forced mate to the active player. The
number of plies until mate is given by subtracting the evaluation from the value 32767. Thus, a
winning mate in N fullmoves is a mate in ((2 * N) - 1) halfmoves (or ply) and has a corresponding
centipawn evaluation of (32767 - ((2 * N) - 1)). For example, a mate on the move (mate in one)
has a centipawn evaluation of 32766 while a mate in five has a centipawn evaluation of 32758.

A value less than -32000 indicates the availability of a forced mate to the passive player. The
number of plies until mate is given by subtracting the evaluation from the value -32767 and then
negating the result. Thus, a losing mate in N fullmoves is a mate in (2 * N) halfmoves (or ply) and
has a corresponding centipawn evaluation of (-32767 + (2 * N)). For example, a mate after the
move (losing mate in one) has a centipawn evaluation of -32765 while a losing mate in five has a
centipawn evaluation of -32757.

A value of -32767 indicates an illegal position. A stalemate position has a centipawn evaluation of
zero as does a position drawn due to insufficient mating material. Any other position known to be
a certain forced draw also has a centipawn evaluation of zero.

16.2.18 Opcode "dm": direct mate fullmove count

The "dm" opcode is used to indicate the number of fullmoves until checkmate is to be delivered by
the active color for the indicated position. It always takes a single operand which is a positive
integer giving the fullmove count. For example, a position known to be a "mate in three" would

have an operation of "dm 3;" to indicate this.

This opcode is intended for use with problem sets composed of positions requiring direct mate
answers as solutions.

16.2.19 Opcode "draw_accept": accept a draw offer

The opcode "draw_accept" is used to indicate that a draw offer made after the move that lead to
the indicated position is accepted by the active player. This opcode takes no operands.

16.2.20 Opcode "draw_claim": claim a draw

The opcode "draw_claim" is used to indicate claim by the active player that a draw exists. The
draw is claimed because of a third time repetition or because of the fifty move rule or because of
insufficient mating material. A supplied move (see the opcode "sm") is also required to appear as
part of the same EPD record. The draw_claim opcode takes no operands.

16.2.21 Opcode "draw_offer": offer a draw

The opcode "draw_offer" is used to indicate that a draw is offered by the active player. A supplied
move (see the opcode "sm") is also required to appear as part of the same EPD record; this move is
considered played from the indicated position. The draw_offer opcode takes no operands.

16.2.22 Opcode "draw_reject": reject a draw offer

The opcode "draw_reject" is used to indicate that a draw offer made after the move that lead to the
indicated position is rejected by the active player. This opcode takes no operands.

16.2.23 Opcode "eco": _Encyclopedia of Chess Openings_ opening code

The opcode "eco" is used to associate an opening designation from the _Encyclopedia of Chess
Openings_ taxonomy with the indicated position. The opcode takes either a single string operand
(the ECO opening name) or no operand at all. If an operand is present, its value is associated with
an "ECO" string register of the scanning program. If there is no operand, the ECO string register
of the scanning program is set to null.

The usage is similar to that of the "ECO" tag pair of the PGN standard.

16.2.24 Opcode "fmvn": fullmove number

The opcode "fmvn" represents the fullmove n umber associated with the position. It always takes a
single operand that is the positive integer value of the move number.

This opcode is used to explicitly represent the fullmove number in EPD that is present by default
in FEN as the sixth field. Fullmove number information is usually omitted from EPD because it
does not affect move generation (commonly needed for EPD-using tasks) but it does affect game
notation (commonly needed for FEN-using tasks). Because of the desire for space optimization for
large EPD files, fullmove numbers were dropped from EPD’s parent FEN. The halfmove clock

information was similarly dropped.

16.2.25 Opcode "hmvc": halfmove clock

The opcode "hmvc" represents the halfmove clock associated with the position. The halfmove
clock of a position is equal to the number of plies since the last pawn move or capture. This
information is used to implement the fifty move draw rule. It always takes a single operand that is
the non-negative integer value of the halfmove clock.

This opcode is used to explicitly represent the halfmove clock in EPD that is present by default in
FEN as the fifth field. Halfmove clock information is usually omitted from EPD because it does
not affect move generation (commonly needed for EPD-using tasks) but it does affect game
termination issues (commonly needed for FEN-using tasks). Because of the desire for space
optimization for large EPD files, halfmove clock values were dropped from EPD’s parent FEN.
The fullmove number information was similarly dropped.

16.2.26 Opcode "id": position identification

The opcode "id" is used to provide a simple identifying label for the indicated position. It takes a
single string operand.

This opcode is intended for use with test suites used for measuring chessplaying program strength.
An example "id" operand for the seven hundred fifty seventh position of the one thousand one
problems in Reinfeld’s _1001 Winning Chess Sacrifices and Combinations_ would be
"WCSAC.0757" while the fifteenth position in the twenty four problem Bratko-Kopec test suite
would have an "id" operand of "BK.15".

16.2.27 Opcode "nic": _New In Chess_ opening code

The opcode "nic" is used to associate an opening designation from the _New In Chess_ taxonomy
with the indicated position. The opcode takes either a single string operand (the NIC opening
name) or no operand at all. If an operand is present, its value is associated with an "NIC" string
register of the scanning program. If there is no operand, the NIC string register of the scanning
program is set to null.

The usage is similar to that of the "NIC" tag pair of the PGN standard.

16.2.28 Opcode "noop": no operation

The "noop" opcode is used to indicate no operation. It takes zero or more operands, each of which
may be of any type. The operation involves no processing. It is intended for use by developers for
program testing purposes.

16.2.29 Opcode "pm": predicted move

The "pm" opcode is used to provide a single predicted move for the indicated position. It has
exactly one operand, a move playable from the position. This move is judged by the EPD writer to
represent the best move available to the active player.

If a non-empty "pv" (predicted variation) line of play is also present in the same EPD record, the
first move of the predicted variation is the same as the predicted move. The "pm" opcode is
intended for use as a general "display hint" mechanism.

16.2.30 Opcode "pv": predicted variation

The "pv" opcode is used to provide a predicted variation for the indicated position. It has zero or
more operands which represent a sequence of moves playable from the position. This sequence is
judged by the EPD writer to represent the best play available.

If a "pm" (predicted move) operation is also present in the same EPD record, the predicted move is
the same as the first move of the predicted variation.

16.2.31 Opcode "rc": repetition count

The "rc" opcode is used to indicate the number of occurrences of the indicated position. It takes a
single, positive integer operand. Any position, including the initial starting position, is considered
to have an "rc" value of at least one. A value of three indicates a candidate for a draw claim by the
position repetition rule.

16.2.32 Opcode "resign": game resignation

The opcode "resign" is used to indicate that the active player has resigned the game. This opcode
takes no operands.

16.2.33 Opcode "sm": supplied move

The "sm" opcode is used to provide a single supplied move for the indicated position. It has
exactly one operand, a move playable from the position. This move is the move to be played from
the position.

The "sm" opcode is intended for use to communicate the most recent played move in an active
game. It is used to communicate moves between programs in automatic play via a network. This
includes correspondence play using e-mail and also programs acting as network front ends to
human players.

16.2.34 Opcode "tcgs": telecommunication: game selector

The "tcgs" opcode is one of the telecommunication family of opcodes used for games conducted
via e-mail and similar means. This opcode takes a single operand that is a positive integer. It is
used to select among various games in progress between the same sender and receiver.

16.2.35 Opcode "tcri": telecommunication: receiver identification

The "tcri" opcode is one of the telecommunication family of opcodes used for games conducted
via e-mail and similar means. This opcode takes two order dependent string operands. The first
operand is the e-mail address of the receiver of the EPD record. The second operand is the name
of the player (program or human) at the address who is the actual receiver of the EPD record.

16.2.36 Opcode "tcsi": telecommunication: sender identification

The "tcsi" opcode is one of the telecommunication family of opcodes used for games conducted
via e-mail and similar means. This opcode takes two order dependent string operands. The first
operand is the e-mail address of the sender of the EPD record. The second operand is the name of
the player (program or human) at the address who is the actual sender of the EPD record.

16.2.37 Opcode "v0": variation name (primary, also "v1" though "v9")

The opcode "v0" (lower case letter "v", digit character zero) indicates a top level variation name
that applies to the given position. It is the first of ten ranked variation names, each of which has a
mnemonic formed from the lower case letter "v" followed by a single decimal digit. Each of these
opcodes takes either a single string operand or no operand at all.

This ten member variation name family of opcodes is intended for use as traditional variation
names for a complete game or game fragment. The usual processing of these opcodes are as
follows:

1. At the beginning of a game (or game fragment), a move sequence scanning program
initializes each element of its set of ten variation name string registers to be null.

2. As the EPD record for each position in the game is processed, the variation name operations
are interpreted from left to right. (Actually, all operations in n EPD record are interpreted
from left to right.) Because operations appear in ASCII order according to their opcode
mnemonics, opcode "v0" (if present) will be handled prior to all other opcodes, then opcode
"v1" (if present), and so forth until opcode "v9" (if present).

3. The processing of opcode "vN" (0 <= N <= 9) involves two steps. First, all variation name
string registers with an index equal to or greater than N are set to null. (This is the set "vN"
though "v9".) Second, and only if a string operand is present, the value of the corresponding
variation name string register is set equal to the string operand.

17. Alternative chesspiece identifier letters

English language piece names are used to the letter set for identifying chesspieces in PGN
movetext. However, authors of programs which are used only for local presentation or scanning of
chess move data may find it convenient to use piece letter codes common in their locales. This is
not a problem as long as PGN data that resides in archival storage or that is exchanged among
programs still uses the SAN (English) piece letter codes: "PNBRQK".

For the above authors only, a list of alternative piece letter codes are provided:

Language Piece letters (pawn knight bishop rook queen king)
---------- --
Czech P J S V D K
Danish B S L T D K
Dutch O P L T D K
English P N B R Q K
Estonian P R O V L K
Finnish P R L T D K
French P C F T D R
German B S L T D K

Hungarian G H F B V K
Icelandic P R B H D K
Italian P C A T D R
Norwegian B S L T D K
Polish P S G W H K
Portuguese P C B T D R
Romanian P C N T D R
Spanish P C A T D R
Swedish B S L T D K

18. Formal syntax
<PGN-database> ::= <PGN-game> <PGN-database>
 <empty>
<PGN-game> ::= <tag-section> <movetext-section>
<tag-section> ::= <tag-pair> <tag-section>
 <empty>
<tag-pair> ::= [<tag-name> <tag-value>]
<tag-name> ::= <identifier>
<tag-value> ::= <string>
<movetext-section> ::= <element-sequence> <game-termination>
<element-sequence> ::= <element> <element-sequence>
 <recursive-variation> <element-sequence>
 <empty>
<element> ::= <move-number-indication>
 <SAN-move>
 <numeric-annotation-glyph>
<recursive-variation> ::= (<element-sequence>)
<game-termination> ::= 1-0
 0-1
 1/2-1/2
 *
<empty> ::=

19. Canonical chess position hash coding

*** This section is under development.

20. Binary representation (PGC)

*** This section is under development.

The binary coded version of PGN is PGC (PGN Game Coding). PGC is a binary representation
standard of PGN data designed for the dual goals of storage efficiency and program I/O. A file
containing PGC data should have a name with a suffix of ".pgc".

Unlike PGN text files that may have locale dependent representations for newlines, PGC files have
data that does not vary due to local processing environment. This means that PGC files may be
transferred among systems using general binary file methods.

PGC files should be used only when the use of PGN is impractical due to time and space resource
constraints. As the general level of processing capabilities increases, the need for PGC over PGN
will decrease. Therefore, implementors are encouraged not to use PGC as the default

representation because it is much more difficult (than PGN) to understand without proper
software.

PGC data is composed of a sequence of PGC records. Each record is composed of a sequence of
one or more bytes. The first byte is the PGN record marker and it specifies the interpretation of the
remaining portion of the record. This remaining portion is composed of zero or more PGN record
items. Item types move sequences, move sets, and character strings.

20.1 Bytes

At the lowest level, PGC binary data is organized as bytes, words (two contiguous bytes), and
doublewords (four contiguous bytes). All eight bits of a byte are used. Longwords (eight
contiguous bytes) are not used. Integer values are stored using two’s complement representation.
Integers may be signed or unsigned depending on context. Multibyte integers are stored in
low-endian format with the least significant byte appearing first.

A one byte integer item is called "int-1". A two byte integer item is called "int-2". A four byte
integer item is called "int-4".

Characters are stored as bytes using the ISO 8859/1 Latin-1 (ECMA-94) code set. There is no
provision for other characters sets or representations.

20.2 Move ordinals

A chess move is represented using a move ordinal. This is a single unsigned byte quantity with
values from zero to 255. A move ordinal is interpreted as an index into the list of legal moves from
the current position. This list is constructed by generating the legal moves from the current
position, assigning SAN ASCII strings to each move, and then sorting these strings in ascending
order. Note that a seven bit ordinal, as used by some inferior representation systems, is insufficient
as there are some positions that have more than 128 moves available.

Examples: From the initial position, there are twenty moves. Move ordinal 0 corresponds to the
SAN move string "Na3"; move ordinal 1 corresponds to "Nc3", move ordinal 4 corresponds to
"a3", and move ordinal 19 corresponds to "h4". Moves can be organized into sequences and sets.
A move sequence is an ordered list of moves that are played, one after another from first to last. A
move set is a list of moves that are all playable from the current position.

Move sequence data is represented using a length header followed by move ordinal data. The
length header is an unsigned integer that may be a byte or a word. The integer gives the number,
possibly zero, of following move ordinal bytes. Most move sequences can be represented using
just a byte header; these are called "mvseq-1" items. Move sequence data using a word header are
called "mvseq-2" items.

Move set data is represented using a length header followed by move ordinal data. The length
header is an unsigned integer that is a byte. The integer gives the number, possibly zero, of
following move ordinal bytes. All move sets are be represented using just a byte header; these are
called "mvset-1" items. (Note the implied restriction that a move set can only have a maximum of
255 of the possible 256 ordinals present at one time.)

20.3 String data

PGC string data is represented using a length header followed by bytes of character data. The
length header is an unsigned integer that may be a byte, a word, or a doubleword. The integer
gives the number, possibly zero, of following character bytes. Most strings can be represented
using just a byte header; these are called "string-1" items. String data using a word header are
called "string-2" items and string data using a doubleword header are called "string-4" items. No
special ASCII NUL termination byte is required for PGC storage of a string as the length is
explicitly given in the item header.

20.4 Marker codes

PGC marker codes are given in hexadecimal format. PGC marker code zero (marker 0x00) is the
"noop" marker and carries no meaning. Each additional marker code defined appears in its own
subsection below.

20.4.1 Marker 0x01: reduced export format single game

Marker 0x01 is used to indicate a single complete game in reduced export format. This refers to a
game that has only the Seven Tag Roster data, played moves, and no annotations or comments.
This record type is used as an alternative to the general game data begin/end record pairs described
below. The general marker pair (0x05/0x06) is used to help represent game data that can’t be
adequately represented in reduced export format. There are eight items that follow marker 0x01 to
form the "reduced export format single game" record. In order, these are:

1. string-1 (Event tag value)
2. string-1 (Site tag value)
3. string-1 (Date tag value)
4. string-1 (Round tag value)
5. string-1 (White tag value)
6. string-1 (Black tag value)
7. string-1 (Result tag value)
8. mvseq-2 (played moves)

20.4.2 Marker 0x02: tag pair

Marker 0x02 is used to indicate a single tag pair. There are two items that follow marker 0x02 to
form the "tag pair" record; in order these are:

1. string-1 (tag pair name)
2. string-1 (tag pair value)

20.4.3 Marker 0x03: short move sequence

Marker 0x03 is used to indicate a short move sequence. There is one item that follows marker
0x03 to form the "short move sequence" record; this is:

1) mvseq-1 (played moves)

20.4.4 Marker 0x04: long move sequence

Marker 0x04 is used to indicate a long move sequence. There is one item that follows marker 0x04
to form the "long move sequence" record; this is:

1) mvseq-2 (played moves)

20.4.5 Marker 0x05: general game data begin

Marker 0x05 is used to indicate the beginning of data for a game. It has no associated items; it is a
complete record by itself. Instead, it marks the beginning of PGC records used to describe a game.
All records up to the corresponding "general game data end" record are considered to be part of the
same game. (PGC record type 0x01, "reduced export format single game", is not permitted to
appear within a general game begin/end record pair. The general game construct is to be used as an
alternative to record type 0x01 in those cases where the latter is too restrictive to contain the data
for a game.)

20.4.6 Marker 0x06: general game data end

Marker 0x06 is used to indicate the end of data for a game. It has no associated items; it is a
complete record by itself. Instead, it marks the end of PGC records used to describe a game. All
records after the corresponding (and earlier appearing) "general game data begin" record are
considered to be part of the same game.

20.4.7 Marker 0x07: simple-nag

Marker 0x07 is used to indicate the presence of a simple NAG (Numeric Annotation Glyph). This
is an annotation marker that has only a short type identification and no operands. There is one item
that follows marker 0x07 to form the "simple-nag" record; this is:

1) int-1 (unsigned NAG value, from 0 to 255)

20.4.8 Marker 0x08: rav-begin

Marker 0x08 is used to indicate the beginning of an RAV (Recursive Annotation Variation). It has
no associated items; it is a complete record by itself. Instead, it marks the beginning of PGC
records used to describe a recursive annotation. It is considered an opening bracket for a later
rav-end record; the recursive annotation is completely described between the bracket pair. The
rav-begin/data/rav-end structures can be nested.

20.4.9 Marker 0x09: rav-end

Marker 0x09 is used to indicate the end of an RAV (Recursive Annotation Variation). It has no
associated items; it is a complete record by itself. Instead, it marks the end of PGC records used to
describe a recursive annotation. It is considered a closing bracket for an earlier rav-begin record;
the recursive annotation is completely described between the bracket pair. The
rav-begin/data/rav-end structures can be nested.

20.4.10 Marker 0x0a: escape-string

Marker 0x0a is used to indicate the presence of an escape string. This is a string represented by the
use of the percent sign ("%") escape mechanism in PGN. The data that is escaped is the sequence
of characters immediately follwoing the percent sign up to but not including the terminating
newline. As is the case with the PGN percent sign escape, the use of a PGC escape-string record is
limited to use for non-archival data. There is one item that follows marker 0x0a to form the
"escape-string" record; this is the string data being escaped:

1) string-2 (escaped string data)

21. E-mail correspondence usage

*** This section is under development.

