Linear Systems and the TI-92+

   This article describes how the TI-92+ can be used to solve linear systems.  A method is given for solving a completely determined system.  Then the solution of an underdetermined system is discussed along with a TI-BASIC function that gives a symbolic solution to such a system.  This article is written with first-semester linear algebra students (and their instructors) in mind.

Completely Determined Systems

   Right out of the box, the TI-92+ (and it’s smaller sibling, the TI-89) provides the ability to solve one class of linear systems.  That class consists of those linear systems that are completely determined.  This means that they described by n variables in n unknowns and can have their coefficients collected into a square matrix.  For example, suppose I needed to find solutions to this system:


[image: image1.wmf]20

4

3

7

7

5

4

5

93

7

4

2

9

45

4

5

5

10

71

4

5

5

8

5

4

3

2

1

5

4

1

5

3

2

1

5

4

3

2

1

4

3

2

1

=

+

-

+

-

=

+

+

=

-

+

-

=

+

+

-

-

=

+

+

-

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x


   Now provided a unique solution exists, it’s easy to solve the system on the TI-92+ in the following three steps.  First, I enter the coefficients of the linear equations into a matrix, using zero for the ‘missing’ variables (Figure 1).

[image: image2.png]
Figure 1
   Next, I enter the constants (i.e. the ‘values’) of the linear equations into a column vector (Figure 2).

[image: image3.png]
Figure 2
   Recall that if Ax = b and A is invertible, then A-1b = x.  So I can solve the system by evaluating A-1b on the TI-92+ (Figure 3).

[image: image4.png]
Figure 3
   So the solution to the linear system is the column vector show in Figure 3 -  and note that I saved it in the variable ‘x’.  That way, I can confirm that it really is the solution by computing Ax = b (Figure 4).

[image: image5.png]
Figure 4
   Indeed, the solution checks out.

Underdetermined Systems

  Suppose I was required to solve a system like this one:


[image: image6.wmf]24

20

2

8

8

33

27

4

7

5

8

39

37

8

22

9

5

5

4

3

1

5

4

3

2

1

5

4

3

2

1

=

+

-

-

-

-

=

+

-

-

+

-

=

-

-

+

-

-

x

x

x

x

x

x

x

x

x

x

x

x

x

x


   By inspection, I can tell that this system is underdetermined – it’s a system of three equations in five variables.   Suppose I begin as in the previous example by saving the coefficients into a matrix A (Figure 5).

[image: image7.png]
Figure 5
   Likewise, I would enter the constants into a vector b (Figure 6).

[image: image8.png]
Figure 6
   But look what happens when I try to compute A-1b (Figure 7):

[image: image9.png]
Figure 7
   A dimension error results because it’s not possible to compute the inverse of a non-square matrix.  Remember, I’m dealing with a system of three equations in five variables.  So, the solution will not be a unique – rather it will be a linear combination of one or more vectors.  By using the function gs, the solution can be obtained (Figure 8).

[image: image10.png]
Figure 8
   So where did the x’s (e.g. x3, x5) in the solution come from?  The answer is that x3 and x5 are free variables.  The solution given in figure 8 could also be viewed as the linear combination of the vectors:


[image: image11.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

+

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

+

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

=

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

+

+

-

-

+

-

0

4

0

3

4

1

2

0

7

2

0

0

1

3

1

4

2

3

7

3

4

2

5

3

5

5

3

5

3

5

3

x

x

x

x

x

x

x

x

x


 Subjecting the computed solution to a check confirms it’s correctness:

[image: image12.png]
Figure 9
Software to Solve Underdetermined Systems

   The motivation to write a function to handle underdetermined systems was that I found myself repeating the same sequence of steps over and over again to obtain solutions.  Further, as one progresses in learning linear algebra, the truly interesting systems are usually underdetermined – linearly dependent sets, subspaces such as the null space, and so forth.  It became clear that the symbolic capabilities of the TI-92+ could be brought to bear on the problem – thus function gs   (for ‘General Solution’) was born.

  Function gs works by building an augmented matrix of the coeffients and constants, row-reducing it, and solving the resulting system for the values of the free variables.

   Because the TI-92+ didn’t have a way to associate free variables with the non-pivot positions of a row-reduced matrix, I created function crcvec.   Function crcvec (for ‘Create Column Vector’) returns a ‘symbolic’ column vector – so a call to crcvec(“x”, 5) would produce the following:


[image: image13.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

5

4

3

2

1

x

x

x

x

x


   Because the elements of the column vector are references to variables, should some variable such as x1, x2, x3… exist in the current folder then it’s value will be substituted into the column vector.  This is probably not desired, so the user should be aware of the current folder’s contents.

   I hope the readers find gs useful!  The TI-BASIC code for gs and crcvec appears in figures 10 and 11.

Figure 10

Figure 11


gs(a,b)

Func



Local  ab,x,x_,ex

Local  i,j,m,n,zf



¨ Save row & col dims in m, n



rowDim(a)»m

colDim(a)»n



¨ Make augmented matrix, row-reduce

¨ it and split it up



augment(a,b)»ab

rref(ab)»ab

subMat(ab,1,1,m,n)»a

subMat(ab,1,n+1,m,n+1)»b



¨ Check for inconsistent system



For  i,1,m

  true»zf

  For  j,1,n

    If a[i,j]�0 Then

      false»zf

      Exit

    EndIf

  EndFor

  If zf and b[i,1]�0 Then

    Return  [[0]]^(ª1)

  EndIf

EndFor



¨ Make col vector of form [x1,x2...]



crcvec("x",n)»x

x»x_



¨ Make vector of linear equations



a*x=b»ex



¨ Solve each equation in vector



For  i,1,m

  For  j,1,n

    If ab[i,j]�0 Then

      propFrac(right(cSolve(ex[i,1],x[j,1])))»x_[j,1]

      Exit

    EndIf

  EndFor

EndFor



¨ Return vector of solutions



Return  x_



EndFunc



crcvec(el,m)

Func

Local  i,s,x



¨ Make zero vector



newMat(m,1)»x



¨ Fill vector with <el>1 ... <el>m



For  i,1,m

  el&string(exact(i))»s

  #s»x[i,1]

EndFor



¨ Return filled-in vector



Return x



EndFunc





1

_1025642296.unknown

_1025643626.unknown

_1025716307.unknown

_1025641931.unknown

