Nonlinear Programming on T1-89

Yanchao Liu
University of Wisconsin-Madison
yliu67@wisc.edu

August 21, 2010

nfmin() implements line search methods to solve min f(z), * € R™ on TI-89 calculator,
provided f is a convex function. Iff is concave, the solution will be the maximum point of f.
If f exhibit neither convex nor concave on R™, then a stationary point (where the gradient
of f equals 0) will be returned if found.

The following five files must be copied and placed in the same folder on the calculator in
order for the program to work properly.

Table 1: List of files

File Type and Size on TI-89
eval .89f FUNC 290

grad.89f FUNC 46

hessian.89f | FUNC 182

nfmin.89p | PRGM 2436
stepsize.89f | FUNC 1404

nfmin() is the main program. Upon its execution, a dialog box shows up (see Figure 1
(a)(b)). The first field is a dropdown list with three method options, namely, FastNewton,
Newton and SteepDecent. SteepDecent stands for the steepest decent method in which the
search direction is always the negative of the gradient. Newton represents the Newton’s
method with automatic Hessian corrections (to make sure the search direction is a decent
direction). FastNewton is the same as Newton except that it circumvents the stepsize routine
by always using the unit step size, therefore saving search time. If the objective function
is quadratic and convex (i.e. the highest order of variables is 2 and the Hessian matrix is
positive definite), such like f(x,y) = 3z + xy + y?, FastNewton is guaranteed to find the
solution in one iteration. In many other cases, FastNewton may also be the best choice.
The second field specifies the objective function (the function to be minimized). Users
can either type in the expression directly in the text field (as shown in Figure 1 (c)), or
type the name of the expression (or function) which the user pre-defines prior to running the
program. For example, if the user has defined an expression with x"2-3x+y~2—f (Note:

user inputs are presented in boldface, same below) and wants to minimize this expression
with respect to x,y, she could just type in f in the Function field. Or if the user has defined
the function using Define f(x,y) = x"2-3x+y "2, then she has to type in f(x,y) in the
Function field.

The third field specifies the variable list, for example, {x,y}, or {x1,x2,x3}, or {x} if
the function involves only one variable x.

The fourth field specifies the initial point in a list, such as {-1,1.2} or {3,0,5} or {0.5},
etc. Note that the values in this list corresponds to the elements in the variable list in the
same order.

The last field gives parameters. There are five elements in this list, i.e. {mazit,toler,beta,c1,
c2,step}. mazit is the maximum number of iterations and the default value is 20. toler is the
precision level, the program terminates (optimality) when the norm of the gradient of the
objective function is less than toler. The default value of toler is 1E-5. beta is the minimum
(positive) value to be added to the diagonal entries of the Hessian matrix when the Hessian
is not positive definite, with 0.5 as the default value. ¢1 and ¢2, with 0 < ¢l < ¢2 < 1, are
the parameters to be used in the Wolfe conditions for step size determination. step is the
trial step size of the line search, with a default value of 1. Note that if FastNewton method
is used, step must be 1.

Once done with this dialog box, the user should press ENTER and the program will start
to run. Since minimizing a nonlinear function (regardless of the method used) essentially
involves seeking a stationary point (where the gradient of the function converges to 0), the
norm of the gradient should ideally keep decreasing iteration by iteration until it reaches
toler. The norm of gradient will be updated on the screen during the run. If the user finds
the norm goes up along the iterations, she might want to break the run by pressing ON,
revise the parameters and try again. Parameters that could make an impact include the
starting point and the step. If SteepDecent diverges, it is especially useful to shrink the step,
to 0.1 for example.

If a solution is found, the program will terminate and display the results. Several variables
that contain the problem information will be saved to the same folder as nfmin() is in (See
Figure 1 (d)). Specifically, zsol stores the solution point in a list format; objuv is the objective
value; objf stores the objective expression; vlst is the variable list; and xinit stores the starting
point of the search which the user specifies upfront. These values will not be saved (updated)
if the run is not successful. Note also that these variables are auxiliary and the users are
free to delete them as they please.

The use of these saved values is not only in the ease of review, but when the next time
nfmin() is run, they will be retrieved and set as default values in the dialog text fields,
intending to save the user some labor.

The other files in the package, as can be seen from Table 1, are functions written in
TI-Basic. Apart from facilitating nfmin(), they are also quite useful on their own.

grad(f,vars) returns the gradient of a function (or expression) f with respect to the
variables in the vars list. Note that vars must be a list (enclosed by {}) even if there is only
one variable. See Figure 2 for an example.

eval(expr,syms,vals) evaluates the expression in expr with the symbols in syms taking
the values in wvals. syms and vals must be lists with the same dimension. See the example
in Figure 3 (a)(b) (continued from Figure 2).

Fi- | Fir |Fe-| Faw | TE | Fér -
roans|adibralcaie|otnar|praminlcieanue] | Zat Problem & Hathed S

Sk Froblem & Method K [5G FE
e froblem = Herho . e oot [Peaminfis
Mathod H * Mathod FastMewton E ; 3
Function: [ab.if Function: [x"3+Ze Zecky—e] LDone after 4. iterations.
3, "z H 3, wl" T % Frw,ur =
war Lisk: [ulsk var Lisk: [Doard b e
&, Ll e &, LulanE k{ JEE85OF - 422127
Init Faint: — Init Faoint: — ; :
o LAl o3 LLEdd LObjective valusd -.718303
Fararcters: [TE01E-E, 5" Farameters: [[201EErEdE- i ; i i
= HewProb Domtie® e, frasitsbelersbetassl ceaters i, LrvdsiboboTeF bk ascdac2ater T EXEDI »objv, obdf, vlst, xinit
nfmind] Enter=0K ESC=CANCEL ESC=CARCEL o fwere saved,
HAIN FAD ALTO FUNE 1770 USE £ AMD % 10 OFEN CHOICES

FAIN KAD AUTO FUMC BA%0 MAIW FRD AFFROY FURC [Fu]
(a) (b) (¢)

(d)

Figure 1: Demonstration of nfmin()

B gradifixl , %20, £x1 =23

L 1.
Dores HewProb Date SeomlT 4+ ln[x2]
! 2 =l T =l Indx) + w2? SR
Diote Diohe i 2
Define flxl,x@o=x]"G-wikl.. gradifiexl, 2y, G, wd gt
FIAIN Al AFFROR FOMC 17z HMAIM FAD AFFROA FUNC Er30 Hobe: Dom

oF Fesull may be Tarder

(a) (b) ()

Figure 2: Demonstration of grad(f,vars)

~ Fu= | FE TG
Done q 1. T 1. = |
S.0x#17 4 1In|—= S.-x17 + ln| == ; -
= grad(fixl, x20, xl =2X) g o,4] lsz . Cxpmeval lxzj) " hezsianifixl, x?, {_>1<1 B
e 1. xl 1 20, %1 :
S.-xl +1n[x2] 2 'xz—ﬁ 2.-x2—ﬁ w2
wl [?8.9@14] [?8.9814 1. x1 2
Zoxrsne 5.33333 5. 33333 HZ w22
eualians(ld, ful, =23, €2, 3. hessianifiml, «20, fxl B2 g i
MAIN FAD AFFROX FUNLC ETEL] HAIN RAD AFFRON FUNC 430 N

(a) (c)

Figure 3: Demonstration of eval(expr,syms,vals) and hessian(f,vars)

hessian(f,vars) returns the Hessian matrix (second order derivatives) of the function f

with respect to vars. See Figure 3 (c¢)(d) for an example.
stepsize(many parameters here) implements the Wolfe conditions to find a suitable step
size for line search methods. There is not much use of it as a stand-alone function thus the

explanation is omitted.
I hope this package could be a useful addition to your TI-89’s software collection. Enjoy!

