 Bilateral laplace transform

Introduction:

This program calculates the bilateral laplace transform of a given signal.

The transform is defined as:

[image: image1.wmf]dt

e

t

f

t

S

×

×

ò

¥

¥

-

×

-

)

(

the program also calculates the R.O.C (range of convergence) in which the transform exists.

Installation:

Type INSTALL() from the LAPLACE2 folder and follow instruction.

During the installation the program will launch itself, at that point you can start working with it and when you’re done press F5 to complete the installation process.

Laplace transform

To start the program type LAP().

F1: enter signals. You can enter right signals (e.g signals that are zero up to a specific time), left signals (e.g signals that are zero from a specific time), bounded signals and Dirac delta.

This program uses EQW by E.W in order to type in signals and assumes that you have it stored in the MAIN folder.

EQW and it’s documentation can be downloaded from: triton.towson.edu/uses/bbhatt1/ti/eqw.htm

When you’re done writing the signal, simply press enter.

Tip: if your signal is made of several functions that some of them are trigonometric, some of them are polynomial and some of them are exponential then you can greatly accelerate the calculation speed if you divide them into the 3 types of signals instead of just typing them in one piece.

For example: suppose you want to transform the signal
[image: image2.wmf])

(

))

cos(

(

2

t

u

t

t

×

+

,

If you press ADD SIGANL, then RIGHT, and then type in the function as it is written above then the transformation time will be 40 seconds but if you press ADD SIGNAL, then RIGHT and type in the
[image: image3.wmf]2

t

and then press ADD SIGNAL, RIGHT and type in the
[image: image4.wmf])

cos(

t

then the calculation time will be 7 seconds.

F2: view the entered signals

F3: calculate the transform

During calculation the program will minimize the list of signals that were entered and then try and transform them one at a time.

The program will mark
[image: image5.wmf]√ next to a signal that it had successfully transformd and
[image: image6.wmf]´

next to a signal that is failed to transform.

After the transformation is done, you can see the result and the R.O.C by typing RESULT() and ROC() from the command line.

Note: the result is saved in a variable named “res” and the R.O.C is saved in the variables “highroc” and “lowroc”.

F4: help.

F5: quit .

[image: image7.wmf]
Inverse laplace transform

From the command line type ILAP(func,low_boundary,high_boundary)

Where func is the signal to transform and the boundaries mark the range of the R.O.C.

Example: typing ILAP(
[image: image8.wmf]3

2

S

,0,
[image: image9.wmf]¥

) on the command line will give the result
[image: image10.wmf])

(

2

t

u

t

×

Note: the files “highroc”, “lowroc” and “res” must not be archived.

History

Version 1.0 released on 10.6.01.

Version 1.05 released on 14.6.01 , a coupled of display bugs fixed, improved signal entering process.

Contact me

Send you questions, comments, suggestions and everything else you think I should know to: carmeln@ee.bgu.ac.il

_1053712938.unknown

_1055139126.unknown

_1055139382.unknown

_1055139380.unknown

_1053744063.unknown

_1053712981.unknown

_1053712525.unknown

_1053712883.unknown

_1053712281.unknown

_1053712264.unknown

