
Sun
Earth Illumination Simulator

Björn Odelfalk∗

April 20, 2004

Abstract

In this paper I will describe how the utility Sun for TI-89 is working.
You can download the utility at http://www.ticalc.org and search for Sun
under TI-89/ASM/PROGRAMS. I will comprehensively explain the the-
ory and the mathematical background to this problem. I will also describe
how to convert the mathematics into computer code.

Computers without a FPU often lacks in speed when evaluating func-
tions like sin(x) or arccos(x). I will show how you can optimize the code so
that the program calculates the value of 4 trigonometric functions instead
of 144000.

1 Theory

My way of solving this problem is to start with the geometric algebra. We want

to present the results on a Mercator map projection, i.e. longitudes and latitudes

are linear to map coordinates. Therefore we define our map coordinates

[θ, φ] (1)

that ranges as

[0 ≤ θ < 2π, 0 ≤ φ < π]

∗Email: bjorn.odelfalk@chello.se Webpage: http://members.chello.se/odelfalk

1

to cover all surface on the sphere. Now we have to transform there map coordi-

nates into 3D cartesian coordinates

[x2, y2, z2] = [sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)]. (2)

The earth rotates diurnal around its z-axis and we have to define an angle

0 ≤ α < 2π that can be calculated from the specific time of day. If 0 ≤ t < 24 is

the time in hours we have the relationship

α = 2π
t

24
=

πt

12
. (3)

The rotation around the z-axis can be expressed like this:


x1

y1

z1

 =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1




x2

y2

z2

 . (4)

Everyone knows by now that Earth is in orbit around the sun and since Earths’

axis of rotation is tilting we have to consider the declination. Therefore we have

to define −dc ≤ β ≤ dc, the declination angle with a maximum of dc = 23.5◦. If

we define 1 ≤ m < 13 as the month1 we have the relationship:

β = −dc
π

180
cos

(
2π

m − 1

12

)
. (5)

The rotation is now around the y-axis:


x

y

z

 =


cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)




x1

y1

z1

 . (6)

Now we have this vector:

[x(α, β, θ, φ), y(α, β, θ, φ), z(α, β, θ, φ)]

which we want to calculate the angular difference from the sun. Let’s say the sun

i placed at

[xs, ys, zs] = [lim
x→∞

x, 0, 0].

1This variable is ofcourse continous, days are the decimals of months and so on.

2

The calculations becomes much more easier if we assume the sun is placed in

infinity, since exactly 50% of the earth is illuminated. Therefore, if the angle, γ,

between [x, y, z] and [xs, ys, zs] is

−π

2
< γ <

π

2

the Earth is illuminated, otherwise it’s not. We can calculate γ with the dot-

product as

γ = arccos

(
[x, y, z] · [xs, ys, zs]

|[x, y, z]||[xs, ys, zs]|

)

where |[x, y, z]| = 1 since we are on a sphere of unity and |[xs, ys, zs]| = limx→∞ x.

The equation can be simplifed to

γ = arccos

(
x

limx→∞ x

limx→∞ x

)
= arccos(x). (7)

This result tells us we can neglect alot of unnecessary calculations. Let’s start

by calculating x from (6):

x = cos(β)x1 − sin(β)z1

both x1 and z1 can be calculated from (4) and we have

x1 = cos(α)x2 − sin(α)y2, z1 = z2.

We can get x2, y2 and z2 from (2) which gives

x = cos(β)
(

cos(α) sin(φ) cos(θ) − sin(α) sin(φ) sin(θ)
)
− sin(β) cos(φ)

so that (7) becomes

γ = arccos(cos(β) sin(φ)
(

cos(α) cos(θ) − sin(α) sin(θ)
)
− sin(β) cos(φ)) (8)

since

cos(α) cos(θ) − sin(α) sin(θ) = cos(α + θ)

it simplifies to

γ = arccos(cos(β) sin(φ) cos(α + θ) − sin(β) cos(φ)). (9)

Believe it or not, but there in no way to further simplifying this equation.

3

2 Implementation

In this section I will describe how this mathematical formulae can be converted

into computer code. There is a big difference how this code can be written

depending on if your system has a FPU (floating point unit) or not.

Functions like sin(x) gets really slow if your system hasn’t got a FPU. This

can be solved, however, by precalculating function values that does not change if

some parameters are static.

2.1 Computer with FPU

If your system includes a FPU you don’t have to be shy about using trigonometric

funtions. But this does not mean that you don’t have to examine if there could

be any simple optimization to do.

If you have a screen with dimensions [0, 0, XMAX-1, YMAX-1] let the vari-

able X go from 0 to XMAX-1 so that THETA = X/XMAX*2*PI. Let Y go from 0 to

YMAX-1 so that PHI = Y/YMAX*PI.

ALPHA is calculated as suggested in (3) so that ALPHA = PI*T/12 where T

is the current time. BETA is calculated as suggested in (5) so that BETA =

-DC*PI/180*COS(2*PI*(M-1)/12) where M is the current month and DC = 23.5.

GAMMA is now calculated as in (9) so that

GAMMA=ACOS(COS(BETA)*SIN(PHI)*COS(ALPHA+THETA)-SIN(BETA)*COS(PHI))

The only thing left to do is the evaluation of GAMMA. If GAMMA < π
2

sun is up

and is ABS(PI/2-GAMMA) degrees over the horizon.

That’s it!

2.2 Computer without FPU (TI-89)

The code in the subsection above can be optimized alot if you are willing to

sacrifice two things. The first thing is that size will replace speed. The second

thing is that you have to have a static resolution, which the TI-89 has luckily.

The screen on a TI-89 has the dimensions [0, 0, 159, 99]. Let X go from

0 to 159 and let Y go from 0 to 99.

If we use equation (8) to calculate GAMMA we see that SIN(PHI), COS(THETA),

SIN(THETA) and COS(PHI) will be fixed values since (X, Y) always goes from

(0, 0) to (159, 99). Therefore we can precalculate these values and store them

corresponding arrays. We’ll create SINPHI[0 to 99]=SIN((0 to 99)/100*PI)

4

and SINTHETA[0 to 159]=SIN((0 to 159)/160*2*PI), the same with arrays

COSPHI and COSTHETA. These arrays has to be static, i.e. calculated before you

compile so that the data is part of the program.

Left in (8) is the COS(BETA), COS(ALPHA), SIN(ALPHA) and SIN(ALPHA).

These variables are only calculated once for every run. Therefore you should

calculate their values before the FOR-loop as COSBETA=COS(BETA) and analogous

to the other three variables.

The only remainder in (8) is now the ACOS() function. But we know from

algebra that

arccos(x) =
π

2
− arcsin(x)

and that x and arcsin(x) switches sign and have the same derivative at x = 0.

This means that we can get ris of the ACOS() function still evaluate GAMMA > 0

as the situation when the sun is over the horizon.

By the way, GAMMA=COSBETA*SINPHI[Y]*(COSALPHA*COSTHETA[X]

-SINALPHA*SINTHETA[X])-SINBETA*COSPHI[Y]. That’s it!

3 Conclusions

Nothing to say really. I like the idea of this program, but if you want it to be

user-friendly it really has to be fast. I hope some of you programmers have read

this paper and get the inspiration to produce your own replica.

Please send me comments about this paper or about the program.

5

