
HASHLIB

Industry-Standard

Cryptography

on the

TI-84+ CE

Version 9.2

Analysis & Extended Information

by Anthony Cagliano

CONTENTS CONTENTS

Contents

1 CSRNG Construction & Analysis 2

1.1 Construction Overview . 2

1.2 Correlation in the Bit Stream . 3

1.3 Proof of Cryptographic Security . 3

2 Side-Channel Analysis 5

2.1 Timing Analysis Protection . 5

2.2 Buffer Leak Protection . 6

2.3 Memory-Mapping Protection . 6

3 Algorithmic Security 7

3.1 CPA Resistance . 7

3.2 CCA Resistance . 7

4 Conclusion 9

5 References 9

Foreword

Despite being developed for an unconventional platform, HASHLIB implements some of the most secure

encryption in use today with an API capable of generating secure keys and salts, as well as constructing

secure channels of communication between the device and a host computer or server. The library facilitates

obfuscation and integrity of transmitted information between two endpoints, and also allows for authenti-

cation and identity verification between said endpoints. This document is a technical descriptor, providing

details relevant to the construction of algorithms within HASHLIB that were built from the ground up, as

well as providing details of hardening measures taken to ensure the library is as secure as possible. This

document is provided such that platform-specific components of the library are able to be analyzed and

peer-reviewed. For basic help with using the library, including overviews of defines, macros, and functions,

consult the separate HASHLIB Quick Reference document, which is more geared towards general library

documentation.

I would like to offer a special thanks to the members of the Cemetech programming community whose

support and assistance has made the continuing development of this library possible. Not only have a few

members been active contributors to this project’s code-base, but many others have contributed to discussions

on SAX and Discord about entropy, math and proofs, and methods of hardening the library against attack.

1

1 CSRNG CONSTRUCTION & ANALYSIS

1 CSRNG Construction & Analysis

1.1 Construction Overview

The CSRNG is the most platform-dependent part of this code, and consequentially the part of it the most

work was done on. The first question to answer in the quest to devise one was does the TI-84+ CE produce

randomness, and if so, how does this differ by hardware revision. The calculator is unlike a computer in that it

lacks many of the dynamic sources of entropy that go into generating randomness for those platforms. While

in the algorithm-development process, I posted on Cemetech seeking information about possible sources of

randomness on the TI-84+ CE. I was soon informed about the viability and functionality of hardware ”bus

noise” by Cemetech user Zeroko.

SRAM has a pair of bitlines for each bit of each column address, which are connected to a circuit

that tries to make them both be charged to an equal, high level before reading from a memory cell

(which partially discharges one of the two) and to a sense amplifier (basically a comparator) to read

the resulting state afterward. (There may also be another level of gating between the bitlines and the

comparators, but that does not strongly affect the dynamics.) In the unmapped space, there are no

memory cells, so the controller equalizes the bitlines however well it does, then does nothing (there

being no memory cell to discharge them), then senses which bitline is at a higher level. For some

column addresses, this will be heavily biased one way or the other because the pre-charge transistors

on the bitlines are too different, while for others, it will be less biased because they are more similar.

Cemetech user ”Zeroko”, Producing Crypto-Safe Randomness on the TI-84+ CE, May 2021

This is the mechanism that drives HASHLIB’s hardware-based RNG. Based on this information and on

the technical information available about this behavior across various revision of the TI-84+ CE, I constructed

an algorithm that polls each bit of every byte in this address space looking for the bit with the least bias

(out of N bit reads, the bit was set closest to 50% of the time). The maximum leeway in the source bit is

a bias of up to 75% in either direction, but the algorithm will always favor the least biased bit. The most

optimal byte is set internally, and is unable to be modified by the user. This allows for use of the same code

regardless of hardware or software revision. Should a bit of sufficient entropy not be found the function will

return NULL, and calls to the other CSRNG functions will return either 0 or NULL.

The HWRNG reserves an entropy pool 119 bytes large in the device’s accelerated RAM (to make the

generator faster). To generate a random number, each byte in the entropy pool is updated by reading from

the selected source byte (the byte containing the bit with the most entropy). The entire pool is then passed

through the SHA-256 cryptographic hash, generating a 32-byte digest. That hash is broken into 8-byte

blocks, each byte of which is xored together to produce a single byte. The result is a 4-byte compression of

the 119 byte entropy pool.

2

https://cemetech.net
https://www.cemetech.net/forum/viewtopic.php?p=293079

1.2 Correlation in the Bit Stream 1 CSRNG CONSTRUCTION & ANALYSIS

1.2 Correlation in the Bit Stream

Due to the nature of the CE hardware, there is a measurable correlation in the values of floating bits within

unmapped memory. This correlation varies depending on the sample size, but would measurably reduce the

entropy of the system. While specific numbers on the degree of correlation are, as of yet, unavailable, we do

know that there are higher amounts of correlation in the initial reads which decreases after a certain number

of reads. To combat this, the entropy gathering function was rewritten with direction from Zeroko.

Another source of non-randomness distinct from the bias is that the bitlines act like capacitors, so

precharging only moves their voltage toward the desired level rather than reaching it. This results in a

correlation between reads, with the correlation getting weaker with a longer time interval between them

and with more intervening reads performed. This is why we cannot just use a von Neumann extractor

(which only de-biases) and instead have to do something like XORing many consecutive bits together

(which does not fully remove the bias and correlation but can lower it to an undetectable level).

Cemetech user ”Zeroko”, Producing Crypto-Safe Randomness on the TI-84+ CE, May 2021

After some discussion it was agreed that making the each byte in the entropy pool a composite of seven

(7) distinct reads from the source byte Xor-ed together would yield acceptable results with entropy negligibly

less than what is computed in Section 1.3.

1.3 Proof of Cryptographic Security

In order to be secure (at least on paper), a PRNG has to pass 2 distinct additional unpredictability as-

sessments in addition to the requirement that it also pass general statistical randomness tests. The two

additional tests are the next-bit test and the state compromise test.

Given the prior output of the PRNG (bits 0 -> i), the next bit (i+1) of the output cannot be predicted

by a polynomial-time statistical test with a probability non-negligibly greater than 50%.

Next-Bit Test

An adversary gaining knowledge of the initial state of the PRNG does not gain any information about

its output.

State Compromise Test

To solve the next-bit test, I’ll make a few assumptions. Firstly, a secure PRNG must pass all statistical

tests. A cryptographic hash, like SHA-256, produces output that satisfies this constraint, regardless of the

entropy of its input. Second, each output of the PRNG is a 32-bit or 4 byte unsigned integer, meaning we

3

https://www.cemetech.net/forum/viewtopic.php?p=293079

1.3 Proof of Cryptographic Security 1 CSRNG CONSTRUCTION & ANALYSIS

need at least 32 bits of entropy to generate such an integer. Do we have that? Observe the computation

below that plugs the worst-case bias in the source byte into a Shannon entropy construction to calculate the

available entropy across the 119 bytes of the entropy pool.

Proof. Entropy for Worst-Case Byte Selection

The byte selected for use by the CSRNG will have at least one bit with a

maximum bias of 75% (± 25% deviation from 50/50), with the rest of the byte

likely having a much higher bias. To this end, we will assume 100% bias, or 0

entropy, for them. The entropy of the 75/25 bit can be represented as the set of

probabilities .75, .25, which can be applied to the equation for Shannon entropy:

H(bit) =

n∑
i=1

P (i) log2

1

P (i)

Where n is the length of the set of probabilities and P (i) is the probability of

the i-th element in the set

H(bit)min = 0.750 log2

1

0.750
+ 0.250 log2

1

0.250
= 0.811

Assuming that this is the entropy of the bit selected, and also assuming that

the rest of the byte in question has minimal entropy (whether this is true or

not depends on what byte we are selecting. Sometimes there is some entropy in

other bits of the byte, other times the bit values are predictable), the entropy

for the entire byte (worst-case) can be calculated like so:

H(byte) = 0.811 + (7 ∗ 0) = 0.811

The entropy pool consists of 119 bytes, so to compute the available entropy we

multiply the entropy per byte by the size of the pool.

H(pool)min(119) = 0.811× 119.0 = 96.51

This means we have 96.51 bits of entropy per 32-bit number at minimum, more than double what is needed.

Because the available entropy exceeds the bit-width of the number we are generating, I assert that the

probability of r <-- {0,1} is within a negligible deviation, ε, from
1

2
for all bits in the 32-bit number. This

would also mean that the advantage of an adversary attempting to differentiate the output of this CSRNG

from a uniform random distribution would also be negligible.

Having proved sufficient entropy in the input, I assert that the output of the generator satisfies all

algorithmic constraints for cryptographic security and will now move onto the second test, state compromise.

Each output of the generator is based on a freshly-constructed entropy pool, meaning that there is no

4

2 SIDE-CHANNEL ANALYSIS

computational relationship between subsequent invocations of the CSRNG. This means that there is no

”initial state” of the generator (apart from what byte we are reading entropy from, and leaking that reveals

nothing of value), and even the leaking of a prior state of the generator will not compromise the next

output. Thus, I assert that this generator also passes the state compromise test, and is thus safe for use as

a cryptographic RNG.

Note that these proofs only apply to physical hardware (an actual TI-84+ CE), not to emulators. Due

to their inability to reproduce the behavior of the unmapped region, they implement a deterministic RNG

to create the illusion of randomness for that range of memory. This yields statistical randomness with an

obscurity factor due to how HASHLIB selects the source, but the randomness is still not cryptographically

secure. Bear this in mind when using HASHLIB from CEmu.

2 Side-Channel Analysis

HASHLIB has an unknown level of resistance to side-channel analysis. The TI-84+ CE is not a device

constructed with hardware security in mind, despite TI repeatedly trying to improve security by taking

actions that have nothing to do with security. One such example was disabling native assembly code execution

to fix a bug that had already been resolved just to appease a bunch of bureaucrats who were well-informed

enough to know the bug existed, but not well-informed enough to know that it had already been patched.

This led to greater efforts at breaching, and exposing, ways to execute code anyway–and not everyone who

now has access to that exploit would have the same benevolent intent that myself and the rest of the TI

programming community does. Pro-tip: allowing non-field experts to control policy is a really good way

to get your policy wrong. You don’t see archaeologists controlling NIST cybersecurity standards. A bit

of advice for TI if any of you wind up seeing this– You don’t nuke an entire feature set to deal with one

specific, unrelated, vulnerability. It’s more to your advantage to re-enable assembly execution and rethink

exam security specifically.

With that rant over, let’s circle back to the subject matter at hand–HASHLIB’s resistance to side-channel

analysis. There are very limited ways in which a device designed to be plugged into a computer and memory-

mapped can be protected against straight-up being plugged into a computer and memory-mapped. I took

some actions that could reasonably be taken without slowing down the library’s functions to harden it against

these types of analyses.

2.1 Timing Analysis Protection

One of the first considerations in this library was resistance to timing analysis. While I have not as of the

time of this writing evaluated the ported functions, all functions written from scratch for this platform had

this form of hardness in mind. The buffer comparison function and the modular exponentiation functions

5

2.2 Buffer Leak Protection 2 SIDE-CHANNEL ANALYSIS

are two examples of this. Over time more of the library will be reviewed and, where necessary, the same

considerations will be extended to those functions as well, where necessary.

2.2 Buffer Leak Protection

Another consideration taken within HASHLIB was to avoid leaving residual computational data in the

stack frame after a function that performs data transformations completes. For this reason, some code was

written that purges the stack frame and we call that code in most of the user-facing encryptor functions

before returning control to the caller. For reference, the code used to accomplish this is:

Listing 1: stack purging code by Zeroko

1 ?stackBot := 0D1987Eh

2 stack_clear:

3 ; backup hl, a, and e

4 ld (.smc_a), a

5 ld (. smc_hl), hl

6 ld a, e

7 ld (.smc_e), a

8

9 ; set from stackBot + 4 to ix - 1 to 0

10 ; ix points to the current top of stack frame

11 lea de, ix - 2

12 ld hl , -(stackBot + 3)

13 add hl, de

14 push hl

15 pop bc

16 lea hl, ix - 1

17 ld (hl), 0

18 lddr

19

20 ; restore a, hl, e

21 ld e, 0

22 .smc_e:=$-1

23 ld a, 0

24 .smc_a:=$-1

25 ld hl , 0

26 .smc_hl :=$-3

27 ld sp , ix

28 pop ix

29 ret

2.3 Memory-Mapping Protection

After resolving buffer leaks, our attention turned to thwarting attempts to map the device’s memory while

HASHLIB is running to glean information about the encryption or decryption. While there is sufficient

difficulty in achieving this in a device designed to be used in that manner in other contexts, I believe the

solution arrived at is sufficient.

6

3 ALGORITHMIC SECURITY

It is the system interrupt that makes it possible for the operating system to handle activity on the USB

port, and disabling said interrupts would severely hamper attempts to read HASHLIB’s state by preventing

the system from responding to USB transfers. For this reason, some code was written that disables interrupts

in all functions where data is being encrypted or decrypted, saving their state to SMC, and restoring that state

afterwards. While there are many variations of this code that operate in slightly different ways depending

on when they are called, here is the basic version of it, for reference:

Listing 2: disable interrupts code by beckadamtheinventor

1 ; helper macro for saving the interrupt state , then disabling interrupts

2 macro save_interrupts?

3 ld a,i

4 push af

5 pop bc

6 ld (. __interrupt_state),bc

7 di

8 end macro

9

10 ; helper macro for restoring the interrupt state

11 macro restore_interrupts? parent

12 ld bc ,0

13 parent.__interrupt_state = $-3

14 push bc

15 pop af

16 ret po

17 ei

18 end macro

3 Algorithmic Security

3.1 CPA Resistance

All of the encryption functions in HASHLIB facilitate CPA security by allowing for the inclusion of a nonce

(random string of bytes) in the encryption. This nonce ensures that if you grant an adversary the ability to

request encryptions of chosen plaintexts (an attack called chosen plaintext attack), the ciphertext will not

be mappable back to a plaintext due to the presence of randomness in the input. In AES, the randomness

is included through the use of an initialization vector, a buffer of length equal to the AES block size that is

filled with random data. In RSA, the randomness is added via the optimal asymmetric encryption padding

scheme (OAEP) which xors the entire message with a salt using a Feistel network.

3.2 CCA Resistance

HASHLIB provides an API that allows you to construct an authenticated encryption protocol that guards

against an adversary able to request decryptions of a chosen ciphertext (an attack named chosen ciphertext

attack). The availability of cryptographic hash as well as a hash-based message authentication code (HMAC)

7

3.2 CCA Resistance 3 ALGORITHMIC SECURITY

provides this functionality. You can use a hash or HMAC appended to a ciphertext to validate that the

encrypted message is unmodified (hash) and from origin (HMAC), and refuse to decrypt any message that

does not pass these checks. This limits an attacker’s ability to supply a ciphertext that is valid to the

decryptor.

HASHLIB does not provide a construction for authenticated encryption/decryption out-of-the-box given

that various use cases will have different implementations. Instead, a series of rules for properly constructing

an authenticated scheme will be in the documentation for the library (HASHLIB Quick Reference, Section

4.8). It will be on the user to follow the rules properly, or their implementation may be insecure.

8

5 REFERENCES

4 Conclusion

In summation, HASHLIB is a work-in-progress and sees regular updates that add resistance to various forms

of attack. While its algorithmic security is solid if implemented properly, hardware-based attack is harder

to defend against due to the nature of the hardware. Thus far, some significant actions have been taken

to secure the library against hardware-based attack and HASHLIB’s code is publicly available on forums

frequented by others familiar with the CE’s hardware and is under continuous peer-review with the aim of

continually improving the library’s security profile.

If you have any questions about the proper usage of HASHLIB in your programs, any of its functionality,

algorithms, etc, please do not hesitate to contact me on Discord at acagliano#3685. I would rather you ask

questions than implement security improperly and risk compromising your implementation.

Please update to new stable releases of HASHLIB as soon as they become available and

update any software you are developing to use the latest versions of HASHLIB as soon as you

are able. At this stage in HASHLIB’s development, updates are security enhancements, not

major feature additions.

5 References

[1] https://github.com/B-Con/crypto-algorithms

source of AES and SHA-256 initial algorithms ported to platform

SHA-256 later rewritten in ez80 Assembly by beckadamtheinventor

[2] https://www.cemetech.net/forum/viewtopic.php?p=293090#293090

source of information on randomness on the TI-84+ CE

[3] https://en.wikipedia.org/wiki/Cryptographically-secure pseudorandom number generator

information on constructing a secure PRNG

[5] https://datatracker.ietf.org/doc/html/rfc8017

guidance on implementing RSA-OAEP and RSA-PSS padding schemes

[6] https://datatracker.ietf.org/doc/html/rfc4868

guidance on implementing SHA-256 HMAC

9

https://github.com/B-Con/crypto-algorithms/
https://www.cemetech.net/forum/viewtopic.php?p=293090#293090
https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc4868

	CSRNG Construction & Analysis
	Construction Overview
	Correlation in the Bit Stream
	Proof of Cryptographic Security

	Side-Channel Analysis
	Timing Analysis Protection
	Buffer Leak Protection
	Memory-Mapping Protection

	Algorithmic Security
	CPA Resistance
	CCA Resistance

	Conclusion
	References

