ZEALOT ZSUB Subroutine Functions v2.0

By Alexander Weissman

A Flabberghast Software Effort

Introduction

What is a Zealot ZSUB? Zealot ZSUBS 2.0 is a group of subroutines that can be implemented in the same way as a function in a variety of programs by using a list for its parameters. If you have ever programmed in C, for example, you know that a function is a block of code that can be called (told to run with a line of code) with parameters – variables that determine how the function will behave. The function will then act on these parameters to produce output, or return a value to the main program. Similarly, Zealot ZSUBS can be called with the prgm command, and their parameters are passed to them using lists and strings. The ZSUB will then either return a value or group of values to another list, or it will produce some output on the screen (print a word in bold, for example).

Zealot ZSUBS are modularized, so they are very easy to use in any program you might create. To use a ZSUB in your program, simply insert the following commands in your program where you want to use the ZSUB, and supply the appropriate arguments, which may be either a constant or a variable.

Arguments (lists, strings, matrix, etc.)

prgm[ZEALOT ZSUB program name]

Where Arguments are arguments defined before running the sub (such as row, column, flags, string to process, etc.) and ZEALOT ZSUB is the ZSUB you wish to run. Using the arguments, the Zealot ZSUB produces an output such as a variable, an output to the screen, or a combination of both (Just like a C function!).

Please be advised: ZSUBS will not alter any standard user variables (A-θ), provided that they are terminated normally. However, ZSUBS will use special lists, which will overwrite any other lists of the same name. The names of the lists used are provided in each description. Zealot ZSUBS also overwrite Str8, Str9, Str0, and the statistical n variable.

ZEALOT ZSUBS as of 01/07/01

(Note: the ‘global activation command’ is no longer required. If you have used Zealot ZSUBS before, then you know what this was. If not, then you may ignore this comment)

ZBIGWORD
Arguments:

LBGWD={x-cood, y-cood, dotting level, point size}
Str0

Where x-cood is the x coordinate of the lower left pixel of the first letter, y-cood is the y coordinate of the lower left pixel, dotting level is the density of the letters (0 for normal text), and point size is the size of the letters, with 1 being standard size and 6 being the maximum size.

ZBIGWORD prints specified text in the upper left corner, then prints an enlarged version at specified coordinates. This function prints the text in the normal size before printing the enlarged version. It prints this in the top six rows of the screen, so ZBIGWORD will only work if you choose X and Y coordinates that do not cause all or part of the enlarged text to be drawn in the top six rows. For example, choosing a Y coordinate of 30 and then using 6 point font would cause the enlarged text to be printed incorrectly. In fact, I really only recommend using this program when creating graphics - it runs much too slowly and can interfere with other program elements.

ZFONTZ

Arguments:

Str2

LFONT={Style Number, Row, Column, Number of Spaces in string}

Str2 is the string to be converted into a specific font. Style number is the font tag number:

1) Bold

2) Underline

Row is the row to be printed to, column is the column to be printed to, Number of spaces is however many spaces are in Str2 (It requires this to ensure that the proper length of underline is printed).

[image: image1.png]

Explanation:

ZFONTZ allows the programmer to add a boldface or underlined appearance to a string and print it on the screen. This is useful for Wordpad type programs as well as titles and headings. Please note that it will not actually change the string in any way, and a regular call of Str2 will not produce formatted text.

ZGRAFSET

Arguments:

Absolutely none.

Explanation:

This is perhaps the most useful ZSUB. This routine, inserted into the beginning of any program, will set up the graph screen for standard graph screen program execution. It sets all the controls to default, and turns off axes, coordinates, and sets the window to standard gaming settings. Most other ZSUBs will not produce correct output unless this subroutine is executed in the main program first. To see exactly which commands are executed, go to EDIT(ZGRAFSET.

ZICONLIB

Arguments:

LARG={Icon number, row, column, on/off flag}
Icon Number is the number of the icon you wish to use. Row and column specify the position of the icon on the screen. The on/off flag specifies whether to turn on or off the icon (1=on; 0=off). Turning an icon on or off usually gives an alternate representation of the icon. The icon numbers are as follows:

1: “@” symbol. Prints the @ symbol in the graph screen.

2: “∑” symbol. Prints the summation symbol to the graph screen. Useful for math programs.

3: “Flabberghast Crown”. Prints a cute little sprite of a crown.

4: “Alex Weissman”. Prints my name, in Title Case! Useful for creating threatening programs towards me.

5: “Scroll Dot”. Prints a 2x2 pixel dot on the graph screen. Makes a nice selector.

(Off) Alternate representation: Clears this symbol.

6: “Lock icon”. Prints a sprite of a padlock in a locked position. Useful for password-protected programs.

(Off) Alternate representation: Prints the padlock in an unlocked position.

7: “Calculator icon”. Prints a sprite of a calculator to the graph screen. Useless.

8: “Folder icon”. Prints an icon of a folder, filled in.

(Off) Alternate representation: Prints an icon of a folder, except not filled in.

[image: image2.png]

ZMENU86

Arguments:
Str2

Str2 is a list of menu options, where Str2 begins with a comma, ends with a comma, and the menu options are each separated by a comma. If you have ever used a TI-86, you have seen the way TI-86 menus work. A little bar with 5 options appears at the bottom of the screen, and each button below the screen corresponds to one of the options. Titles are space-truncated (all characters are butted up against one another) so that each selection may contain up to five characters. This ZSUB basically emulates the TI-86 menu system, although it is limited to only five choices (you can extend to more than five options by using this routine twice, and making the last option in the first implementation “MORE”). Lets say you wanted to make a menu on the graph screen for a mathematics program. You could define Str2 as following:

“,VOL,AREA,TANG,LEN,EXIT,” (Str2

and then put a command to execute ZMENU86. A menu would be printed at the bottom looking something like this:

[image: image3.png]S —

This menu could then be implemented in a program with a loop that recognizes getkey input from each of the buttons under the screen. Please note that this ZSUB uses ZTRNCATE; ZMENU86 will not work without it.
ZTRNCATE

Arguments:

Str1

LARG(2)

LARG(3)
[image: image4.png]

Where Str1 is the string to be printed in truncated form, and LARG(2) and LARG(3) are the row and column, respectively. ZTRNCATE prints Str1 at the specified row and column, without spacing between the characters. The advantage of this routine is that it allows you to fit much more text in such a tiny screen. However, the words are less legible than regularly printed text.

ZTXTTYPE

Arguments:

LTEXT={column, row, maximum input characters, digit/letter flag, mask input flag}
Column and row are the locations on the graph screen to place the prompt (column is specified to be slightly to the right of where you want the prompt to appear), maximum input characters is the maximum number of characters to allow as input, digit/letter flag specifies whether to recognize a key based on its Alpha-value or regular value, and mask input flag specifies whether to mask input with “X” characters.

This subroutine basically allows you to take string input from the graph screen and return it as the string variable Str1. The digit/letter flag allows you to specify whether the digit keys 0-9 will input as digits or as letters. For example, if the digit flag is set to 1 and the ‘8’ key is pressed, the ‘8’ character will be inputted. However, if the digit flag is set to 0, and the ‘8’ key is pressed, the ‘P’ character will be inputted. During program execution, the user can switch between digits and letters using the [ALPHA] key as a toggle.

The mask input flag is excellent for creating password programs. If you set this flag as ‘1’, all input will appear on the screen as ‘X’ characters. The input itself will be intact, but it will be masked similar to the way password fields are masked on web sites.

ZTXTTYPE supports the following characters:

‘Letter’ mode: A-θ, space character, ‘e’, ‘+’, ‘?’

‘Digit’ mode: A-I, 0-9, ‘e’, ‘,’, ‘(‘, ‘)’, ‘+’, ‘-‘, ‘/’, ‘?’

The e character is represented by the [VARS] button

Special keys:

[DEL] – backspace one character

[ALPHA] – toggle between ‘Letter’ and ‘Digit’ mode

This function has no built-in ability to take numerical input; if you wanted to take number variables from the graph screen, you would have to write your own string to integer converter function.

ZWRDWRAP

Arguments:

Str0

LARG(2)

Where Str0 is the string to be scrolled across the screen at row LARG(2). You must be sure to append at least 3 spaces to the end of Str0, so that you will not have an afterimage of the characters on the screen. ZWRDWRAP is a simple program that scrolls the string Str0 across the screen at a specified row. It continues to repeatedly scroll across the screen until any key is pressed.

Bugs in ZEALOT ZSUBS

Many ZEALOT ZSUBS do not contain error-checking routines – it is up to the programmer to choose arguments that fall within acceptable boundaries.

Functions that print to the screen at a specified position (row, column) may return a domain error, even though the row falls within the acceptable boundaries (0-62) for row and (0-94) for column. If this type of domain error happens, you may need to slightly increment or decrement the position coordinates. Often times, commands are executed to activate a pixel plus or minus the specified coordinates; if the coordinates are close to the border, a command may be executed to activate a pixel that is outside of the domain.

What’s coming up in ZEALOT ZSUBS 3.0?

· Further optimization of ZSUB code

· ZBIGWORD – make it optimized for running within programs

· ZFONTZ – more formatting options besides Bold and Underline.

· Integration of ZBIGWORD and ZFONTZ

Flabberghast Software

Questions, comments, suggestions, rants? Feel free to choose one of these options:

The Flabberghast Software Team’s website is at http://www.flabberghast.xs3.com.

Contact us by email: flabberghast@techie.com.

Let us know! If you were able to successfully implement a ZSUB, were you happy with the results? If you had trouble with the ZSUBS, what went wrong? Which parts of this manual were unclear?

Feel free to distribute Flabberghast programs, but please distribute it with this documentation. If you try to get money in exchange for this FREE software, I will have to come over and use my TI-TASER on you. So don’t try it!

Program/Development Information

Please refer to the file “Update.txt” for technical information on the files and development history.

