
TI-83+ Z80 ASM
for the Absolute

Beginner

LESSON TWELVE:

• Working with Key Presses

• Saving Register Values

 Lesson Twelve: Working with Key Presses, Saving Register Values 2

WORKING WITH KEY PRESSES

There was a time when computer programs could only run hard-
coded numbers and instructions. You could not enter numbers, and you
could not change what a program could do with key presses. Nowadays,

 Lesson Twelve: Working with Key Presses, Saving Register Values 3

writing a calculator program without user key presses will easily put it at
the bottom of the list at ticalc.org.

There are three methods that will allow you to detect key presses in
an ASM program. One method, which you have been using as _getKey,
will wait for a keypress. The second method will only wait for a
minuscule fraction of a second for a keypress, and then the program will
keep running.

These two methods, however, are not flexible. First of all, it is
difficult, if not impossible, to use these methods to allow continuous key
detection. What happens when you press the down key—and hold it—
in the catalog on the calculator? Assuming you are not running
Omnicalc or a similar program, there is a brief pause before the menu
keeps scrolling. This is definitely an annoyance if you are writing a
game, such as a Mario game, where you need actions to happen
constantly as the respective key is held.

Secondly, you can’t detect multiply keys at once using this two
methods. If you want to use the keys to move a ship and the second key
to fire, you wouldn’t be able fire and move at the same time.

The third method takes care of both these problems. Read
Appendix C to learn about this. We DO NOT need this method for
ASM Gorillas, and it requires an advanced knowledge of ASM to
understand, so it will not be covered in the lesson itself. Rest assured, at
the end of all the lessons, you will have the capability of understanding
Appendix C.

Going back to _getKey, we know it waits for a key press.
However, it will also tell you what key was pressed, by storing it into
register A. Key presses, like most everything else, are numbers. During

 Lesson Twelve: Working with Key Presses, Saving Register Values 4

_getKey, if you press the Up key, represented as the number 3, register
A will hold the number 3.

But like everything else, we can use constants to make values
easier to remember. In this case, kUp is a constant for the number three.

Key codes for _getKey are represented as hexadecimal numbers.
In appendix G, as well as at the end of this lesson, you will find a table
containing all the values for key presses, in hexadecimal. The dollar
sign in front of the number means that the number is hexadecimal.
When you are writing a program requiring hexadecimal numbers, you
always put a $ in front of a number that you want to be hexadecimal.

Speaking of hexadecimal, since it is traditional to represent RAM
addresses as hexadecimal numbers, we will use hexadecimal numbers
for RAM addresses requiring numbers. For instance, we will stop using
.org 40339 and use .org $9D93 instead, since $9D93 is hexadecimal for
40339.

On the next page is a program that will demonstrate the use of
_getKey to either increase register B or decrease register B. In other
words, we won’t simply use _getKey just to wait for a key press.

 Lesson Twelve: Working with Key Presses, Saving Register Values 5

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld b, 127

 jr Display ; Display initial value of B.

KeyLoop:

 B_CALL _getKey

 cp kUp ; If the up arrow key was pressed.

 jr Z, Increase

 cp kDown ; If the down arrow key was pressed.

 jr Z, Decrease

 cp kClear ; If the CLEAR key was pressed, quit the program

 ret Z

 jr KeyLoop ; If any other key was pressed, redo _GetKey.

Increase:

 ld a, b

 cp 255 ; Don't increment B if it's at its maximum value. That way it doesn’t reset to 0

 jr Z, KeyLoop

 inc b

 jr Display ; Display new value of B.

Decrease:

 ld a, b

 cp 0 ; Don't decrement B if it's at its minimum value, so it doesn’t reset to 255.

 jr Z, KeyLoop

 dec b ;Since the next part of code run is display, we don’t need to jr there.

Display:

 ld a, 0 ; Reset cursor to top of screen.

 ld (curRow), a

 ld a,0

 ld (curCol),a

 ld h,0

 ld l, b

 b_call _DispHL

 jr KeyLoop ; Get another key.

 Lesson Twelve: Working with Key Presses, Saving Register Values 6

The advantage to _getKey is that you can use it to detect when a
key was pressed in conjunction with 2nd or Alpha. For instance, you can
tell the calculator what to do when Alpha-1 is pressed, when 2nd-Math is
pressed, etc. The only issue is that you cannot work with 2nd-Up, Alpha-
Up, Alpha-Down and 2nd-Down with _getKey.

Replace cp kUp with cp kCapA, and replace cp kDown with cp
kCapB. See what happens when you run the program. You can’t
change the value of register B with the regular up/down keys, but you
can change the value either by pressing Alpha-Math or Alpha-APPS.

However, _getKey CANNOT be used to work with the 2nd key by
itself. You cannot use it to work with the Alpha key by itself either.
The 2nd and Alpha keys must be used in conjuction with other keys.

While _getKey waits for the user to press a key, _GetCSC does
not. The user gets one shot at pressing a key, after which the program
will continue. The advantage to _GetCSC is that a program can
constantly be running without having to wait for a keypress. If the user
does press a key, register A will contain the key pressed. If register A is
equal to zero, no key was pressed.

There are some other differences between _GetCSC and _getKey.
First of all, _GetCSC cannot directly access 2nd-Key and Alpha-Key
functions, though it does allow you to use 2nd and Alpha keys by
themselves. Also, _GetCSC uses different constants to represent key
values. kUp and kDown will not work with _GetCSC.

The next page contains a program similar to the previous one. It
uses _getCSC, meaning we have to make adjustments since _GetCSC
waits only a fraction of a second for a keypress, and uses different
constants. Pay special attention to the lines in blue.

 Lesson Twelve: Working with Key Presses, Saving Register Values 7

#include “ti83plus.inc”

.org $9D93

.db t2ByteTok, tAsmCmp

 B_CALL _ClrLCDFull

 ld b, 127

 jr Display ; Display initial value of B.

KeyLoop:

 B_CALL _GetCSC

 cp skUp ; If the up arrow key was pressed.

 jr Z, Increase

 cp skDown ; If the down arrow key was pressed.

 jr Z, Decrease

 cp skClear ; If the CLEAR key was pressed, quit the program

 ret Z

 jr KeyLoop ; If any other key was pressed, or if no key was pressed, redo _GetCSC.

Increase:

 ld a, b

 cp 255 ; Don't increment B if it's at its maximum value. That way it doesn’t reset to 0

 jr Z, KeyLoop

 inc b

 jr Display ; Display new value of B.

Decrease:

 ld a, b

 cp 0 ; Don't decrement B if it's at its minimum value, so it doesn’t reset to 255.

 jr Z, KeyLoop

 dec b ;Since the next part of code run is display, we don’t need to jr there.

Display:

 ld a, 0 ; Reset cursor to top of screen.

 ld (curRow), a

 ld a,0

 ld (curCol),a

 ld h,0

 ld l, b

 b_call _DispHL

 jr KeyLoop ; Get another key.

 Lesson Twelve: Working with Key Presses, Saving Register Values 8

SAVING REGISTER VALUES

 So far, we’ve learned about saving registers by means of saving to
other registers.

 However, as you might expect, this can be a problem if other
registers you can save to are tied up with values you need. Furthermore,
did you see any instructions that allow you to, for example, “LD HL,
DE?” Nope, they don’t exist. So while you can save the value of two
byte registers by, say, “LD H, D LD L, E”, this can be an
inconvenient, and in some cases, impossible. (It would have been
awesome if Zilog could have made 150 registers to solve the problem of
saving registers like this, but that would have been expensive at the time
the processor was invented.)

 Lesson Twelve: Working with Key Presses, Saving Register Values 9

 What about saving the values of registers to RAM? Not a bad
idea, but then register A would have to be free so you could store the
value of the register in A and save it to RAM. This method is also not
very optimized, and in a processor-intensive game, every second counts.

 Did I just say register A would have to be free? Well, I’m
mistaken, but nobody’s perfect. You can save the values of registers to
RAM in one simple instruction, PUSH. Then you recall it by POP.

 Think of this process as a PEZ dispenser. I’m hoping you know
what PEZ in. It’s a very tasty, but tiny, square candy that will have little
ones eating out of your hand in mere moments. What’s more fun is the
way you get that candy. You have a PEZ dispenser with someone’s
head at the top—Charlie Brown, Pluto the Dog, Chuck Norris, etc. To
get candy out of the dispenser, you move the head back, and out comes
the candy! The greatest thing since sliced bread.

 Lesson Twelve: Working with Key Presses, Saving Register Values 10

 Now, does that candy come magically? Of course not, even
though as a three-year-old you might have thought that. You have to put
candy inside of the dispenser to fill it, and then you take candy out to eat
it.

 I think you can tell that when you put candy inside the dispenser, it
always comes out in the opposite order you put it in. If you put in red,
yellow, orange, orange, and yellow, you will eat yellow, orange, orange,
yellow and red.

 So when you use PUSH for saving the value of a register, you save
it in RAM. When you POP it, the last value you pushed is POPed. It
always goes in order, just like PEZ candy. If you push HL = 10, and
then push HL = 11, the first value that is popped will be 11. By the way,

 Lesson Twelve: Working with Key Presses, Saving Register Values 11

our “RAM Dispenser” for pushing and popping values is called a stack.
Think of it as a stack of candy, or a stack of values.

Stack of
RAM

----------->

You can only push and pop 2 Byte registers. Therefore, you can
push and pop HL, DE, BC and AF. You cannot push A, B, C, D, E, F,
H, or L by themselves.

 HOWEVER, if you push HL, you don’t have to pop HL. If you
push in a piece of PEZ candy that belongs to you, do you have to eat it
when you pop out that piece of candy? NO! You can eat it, or you can
give it to a friend or your little sister (now, let’s not be selfish here).
Let’s say you need to save the value of HL = 10. So you push it. If DE
needs that value later, you can use POP DE, and DE will equal 10. Be
aware that once you pop a value, it disappears from the stack. A piece

 Lesson Twelve: Working with Key Presses, Saving Register Values 12

of PEZ candy popped from the dispenser can only appear again if you
put it back inside the dispenser.

 Pushing and poping is a very effective method for saving the
values of registers. But be sure that your stack of values is empty before
you exit your program. (In other words, each and every “push” should
have a “pop” somewhere in the program.) Otherwise, you will have an
error, possibly a crash. This will be explained in Appendix F.

 We’ll use what we learned in this chapter in the next lesson when
we do more work with ASM Gorillas. Then, we’ll start looking
at…(drumroll)…graphics! Don’t forget that there are tables for
keypress values on the next pages, courtesy of Sean McLaughlin.

 Lesson Twelve: Working with Key Presses, Saving Register Values 13

Key Codes (For _getKey)

These are the codes returned from the GetKey routine. They are grouped into four categories:

• Primary-Function Keys (press the key)

• 2nd-Function Keys (press [2nd])

• Alpha-Function Keys (press [ALPHA])

• Alpha-Alpha-Function Keys (press [ALPHA] twice)

There are no codes for 2nd+Up or 2nd+Down, they always change the contrast.

Alpha-Alpha keys must be enabled with

 SET LwrCaseActive,(IY+AppLwrCaseFlag)

kExtendEcho2 ($FC) is always returned in A. (KeyExtend) holds the keycode.

Primary-Function Keys

Key Equate Value Key Equate Value Key Equate Value

[Y=] kYEqu $49 [MODE] kMode $45 [X,T,θ,n] kVarX $B4

[WINDOW] kWindow $48 [DEL] kDel $0A [STAT] kStat $31

[ZOOM] kZoom $2E < kLeft $02 V kDown $04

[TRACE] kTrace $5A Λ kUp $03

 [GRAPH] kGraph $44 > kRight $01

[MATH] kMath $32 [x-1] kInv $86 [x2] kSquare $BD

[APPS] kAppsMenu $2C [SIN] kSin $B7 [,] kComma $8B

[PRGM] kPrgm $2D [COS] kCos $B9 [(] kLParen $85

[VARS] kVars $35 [TAN] kTan $BB [)] kRParen $86

[CLEAR] kClear $09 [^] kExpon 84 [÷] kDiv $83

 Lesson Twelve: Working with Key Presses, Saving Register Values 14

[LOG] kLog $C1 [LN] kLn $BF [STO=>] kStore $8A

[7] k7 $95 [4] k4 $92 [1] k1 $8F

[8] k8 $96 [5] k5 $93 [2] k2 $90

[9] k9 $97 [6] k6 $94 [3] k3 $91

[×] kMul $82 [-] kSub $81 [+] kAdd $80

[0] k0 $8E

[.] kDecPnt $8D

[(-)] kChs $8C

[ENTER] kEnter $05

Second-Function Keys

Key Equate Value Key Equate Value Key Equate Value

[STAT PLOT] kStatEd $43 [QUIT] kQuit $40 [LINK] kLinkIO $41

[TBLSET] kTblSet $4B [INS] kIns $0B [LIST] kList $3A

[FORMAT] kFormat $57 [2nd] + < kBOL $0E

 [CALC] kCalc $3B [2nd] + > kEOL $0F

[TABLE] kTable $4A

[TEST] kTest $33 [MATRX] kMatrix $37 [√] kSqrt $BE

[ANGLE] kAngle $39 [SIN-1] kASin $B8 [EE] kEE $98

[DRAW] kDraw $2F [COS-1] kACos $BA [{] kLBrace $EC

[DISTR] kDist $38 [TAN-1] kATan $BC [}] kRBrace $ED

[π] kPi $B5 [e] kCONSTeA $EF

 Lesson Twelve: Working with Key Presses, Saving Register Values 15

[10x] kALog $C2 [ex] kExp $C0 [RCL] kRecall $0C

[u] kUnA $F9 [L4] kL4A $F6 [L1] kL1A $F3

[v] kVnA $FA [L5] kL5A $F7 [L2] kL2A $F4

[w] kWnA $FB [L6] kL6A $F8 [L3] kL3A $F5

[[] kLBrack $87 []] kRBrack $88 [MEM] kMem $36

[OFF] kOff $3F

[CATALOG] kCatalog $3E

[i] kI $EE

[ANS] kAns $C5

[ENTRY] kLastEnt $0D

Alpha-Function Keys

Key Equate Value Key Equate Value Key Equate Value

Page Up kAlphaUp $07 [A] kCapA $9A [D] kCapD $9D

Page Down kAlphaDown $08 [B] kCapB $9B [E] kCapE $9E

[C] kCapC $9C [F] kCapF $9F

[G] kCapG $A0

[H] kCapH $A1

[I] kCapI $A2 [N] kCapN $A7 [S] kCapS $AC

[J] kCapJ $A3 [O] kCapO $A8 [T] kCapT $AD

[K] kCapK $A4 [P] kCapP $A9 [U] kCapU $AE

[L] kCapL $A5 [Q] kCapQ $AA [V] kCapV $AF

 Lesson Twelve: Working with Key Presses, Saving Register Values 16

[M] kCapM $A6 [R] kCapR $AB [W] kCapW $B0

[X] kCapX $B1

[Y] kCapY $B2 [_] kSpace $99

[Z] kCapZ $B3 [:] kColon $C6

[θ] kThetA $CC [?] kQuest $CA

["] kQuotE $CB [SOLVE] kAlphaEnter $06

Alpha-Alpha-Function Keys

Key Equate Value Key Equate Value Key Equate Value

[a] kLa $E2 [d] kLd $E5 [i] kLi $EA

[b] kLb $E3 [e] kLe $E6 [j] kLj $EB

[c] kLc $E4 [f] kLf $E7 [k] kLk $EC

[g] kLg $E8 [l] kLl $ED

[h] kLh $E9 [m] kLm $EE

[n] kLSmalln $EF [s] kLs $F4 [x] kLx $F9

[o] kLo $F0 [t] kLt $F5 [y] kLy $FA

[p] kLp $F1 [u] kLu $F6 [z] kLz $FB

[q] kLq $F2 [v] kLv $F7

 [r] kLSmallr $F3 [w] kLw $F8

This is part of Learn TI-83 Plus Assembly In 28 Days
Copyright (c) 2002, 2003, 2004 Sean McLaughlin
See the file gfdl.html for copying conditions

 Lesson Twelve: Working with Key Presses, Saving Register Values 17

Scan Codes (For _GetCSC)

These are the codes returned from the GetCSC routine.

The [APPS] key is equated to skMatrix for portability to the TI-83. You may want to re-equate
it in your programs if it's confusing.

Key Equate Value Key Equate Value Key Equate Value
[Y=] skYEqu $35 [2nd] sk2nd $36 [ALPHA] skAlpha $30

[WINDOW] skWindow $34 [MODE] skMode $37 [X,T,θ,n] skGraphVar $28

[ZOOM] skZoom $33 [DEL] skDel $38 [STAT] skStat $20

[TRACE] skTrace $32 < skLeft $02 V skDown $01

[GRAPH] skGraph $31 Λ skUp $04 > skRight $03

[MATH] skMath $2F [x-1] skRecip $2E [x2] skSquare $2D

[APPS] skMatrix $27 [SIN] skSin $26 [,] skComma $25

[PRGM] skPrgm $1F [COS] skCos $1E [(] skLParen $1D

[VARS] skVars $17 [TAN] skTan $16 [)] skRParen $15

[CLEAR] skClear $0F [^] skPower $0E [÷] skDiv $0D

[LOG] skLog $2C [LN] skLn $2B [STO=>] skStore $2A

[7] sk7 $24 [4] sk4 $23 [1] sk1 $22

[8] sk8 $1C [5] sk5 $1B [2] sk2 $1A

[9] sk9 $14 [6] sk6 $13 [3] sk3 $12

[×] skMul $0C [-] skSub $0B [+] skAdd $0A

[0] sk0 $21

[.] skDecPnt $19

[(-)] skChs $11

[ENTER] skEnter $09

This is part of Learn TI-83 Plus Assembly In 28 Days
Copyright (c) 2002, 2003, 2004 Sean McLaughlin
See the file gfdl.html for copying conditions

