
No Duh! Guide to TI-83/+ Programming Page 1 of 1

GUIDE TO

CN
-PRESS-

No Duh! Guide to TI-83/+ Programming Page 2 of 2

Yo, Folks. This is nothing new, but I can’t put up with the best way to
learn Assembly (ASMGuru, duh). The Windows Help is annoying, and
too many things were un-tabbed for my taste (and, um, James is not
developing it any further :(). So all I’ve really done is cook up a
batch of new tutorials with the same content, but better comments.
If you have a problem with Adobe Acrobat, go ahead then, download
AsmGuru. Unless you’re some noob tryin something too hard, or
you’re planning on making the suckiest little programs, or going to do
something totally evil to somebody’s calc, nobody’s trying to stop you.
All my thanks go to James Matthews for writing ASMGuru, and to all
his buds for helping him out.

A few (sorry, I mean a lot of) words of warning…
 Understand this:
 If you create a faulty program, and it screws up your calc, just
remember, DON’T PANIC. Ok, you don’t have the Hitchhiker’s Guide,
but just remember that. You don’t even need to chant some sort of
prayer. Geez, it’s a machine for cryin out loud! You should first take
all the batteries out (Yes, the backup, too). Then leave it alone
overnight, then pop the batteries back in. Ok, you’ve cleared your
RAM, and that’s very disappointing the first time. But take my advice:
GET OVER IT. It happens all the time. And all those games aren’t
really important, because that’s not all there is to life. Life: If you
don’t have one, GET ONE! If this scared you, then ASM is not for you.
 If you don’t know any other programming language or you only
know BASIC, ASM is not for you. (well if you’re smart… I just wanna
make sure that you can handle another language)
 If you are planning to be evil, go sleep on a bed of nails, using
a sharp rock as a pillow, until all your evil desires go away. If they
don’t, then ASM is not for you.
 If you have an IQ below 110, then you might have a hard time
with ASM, because it is VERY HARD.
 No ASM tutorial is light reading. Don’t EVER skim ASM tutorials,
even if you don’t use this one, or you WILL miss something important.

You need:
 A TI-83 or TI-83+ calculator. Don’t worry, I’ll work around the
differences.

No Duh! Guide to TI-83/+ Programming Page 3 of 3

 A compiler, linker, and include files. I know that was very
vague, because I’m insisting that you download the Ionpak. It was
pieced together by Bryan Summersett. If you like, this really has all
you need to start ASM programming, but like I said, you might not be
able to put up with help files. Download it off of whatever web site
you got this from.

 A TI-Graphlink and all the software necessary to use it.

 Ion or eqivalent for the TI-83. I highly recommend MirageOS if
you have an 83+

 I also recommend that you get an emulator. I highly
recommend Rusty Wagner’s Virtual TI, since it is the only one that I
know of that supports the 83+.

 Oh yeah, that calc is for MATH, right? I think you should at
least have a well-developed mind for math (should've passed Algebra
I) because it will really help, plus I don’t have any degrees for being
a teacher. Hey, I’m only in middle school (but I'm GT 8-P)

 Whew! That was long winded, but if you're still here, I guess
you'll read the whole thing. Now about me. I'm sevvie :) as of 00-01.
I've enjoyed computers since I was six. I'm in my fifth year of piano,
and third of trumpet. My ICQ is 94003966, but I can assure you I'm
never on :(If you are interested in contacting me, email
BRPXQZME@hotmail.com and maybe I’ll get to you in a few (*lets
steam out of collar*) months. That’s where you mail suggestions and
nits. Please no viruses, flames, etc., as I don’t have time for that. To
mail donations to me, It’s…Uhm, don’t donate anything yet, the
project ain’t complete yet. Please no package bombs, Ebola, etc.

 As an added bonus, when I’m done with the TI-83/+ tutorials,
I’ll include other systems, such as… Nintendo Game Boy! (believe it
or not, the instructions are VERY similar) I will do it, but not yet (so
I can keep you anxious and looking for updates at all times ;-))
NOTE: Project started Memorial Day, 2001

No Duh! Guide to TI-83/+ Programming Page 4 of 4

Version 0.0 – Started Memorial Day, 2001 Tutorials 1-3
Version 0.1 – Started 8/6/2001 Tutorials 4-10

COVERAGE: so far, parts of TI-83/+. To be implemented: Ion,
Gameboy, maybe more.
FUTURE PROJECT – PseudASM will let you use my soon to be
planned PASM language. It will compile separate files for the TI-83,
the TI-83+, and if someone decided to help me out, I guess that it
might also be used for other calculators.

No Duh! Guide to TI-83/+ Programming Page 5 of 5

Tutorial I:
Beginnings
Wahoo! So lets get started!

 We will be working with just 83 programming at first. Yup, no 83+. I’ll
show how to do that once we’ve learned enough. So if you have an 83+, all you
can do is read along and learn, and don’t try the programs on your calc. If you
have an 83, just don’t worry about that last bit. It was a bit bitchy when I first
tried, but if you’re smart you should get this.

 Now, we won't do any programming yet, but you will learn the necessary
ASM basic principles.

TASM
 TASM is our compiler. The compiler only produces object code, which has
to be linked (but you really don’t have to worry about that). Ionpak has
conveniently included devpac83, which will do that. Also included is asm.bat, so
we won’t have to worry about MS-DOS command line parameters (they can be a
pain, and ASM is already hard enough).

 Problem: TASM is likes periods (.) in front of its instructions, but the Ti-83
include files (.inc) that TI provided doesn't follow that convention. Thus, we
either have to edit the “include” files or add some small bit of code to the
beginning of every file. Editing the include files is pointless for two reasons:
1. They are frickin too long to do that, and 2. Your code won’t be compatible
with anyone else’s include files. So, um, lets see how we work around that

About the include files
 Most programming languages let you include instruction files outside of
the program. Think of it as a library where common functions are kept, already
written for you under some useful name that you can use in your program. For
example, clearing the screen of the calc (Next tutorial) using a name instead of
writing out the memory address (kinda like using a title instead of a call number).
When the program is compiled and that compiler comes across a command it
looks in the include file library you have told it to include ('ti83asm.inc' right
now) and finds the command, then substitutes the relevant code.

Using include files is ASM

 Here is your first ASM command! Muahahaha! The #define tag is used
in the same way as C/C++ #define statement (and if you don’t know what that
is, GET OUTTA HERE!). Since TI’s include files used end when TASM

No Duh! Guide to TI-83/+ Programming Page 6 of 6

wants .end we must insert this code at the beginning of nearly all programs:

#define end .end
#define END .end ; TASM is case-sensitive (somewhat)
#define equ .equ
#define EQU .equ

END and EQU are the most common places where this happens.

 Your second instruction is ... the #include tag, same as C/C++ use. It
tells the compiler what files to put in that ol “library”.
 Up until now, I’ve been ripping this off of ASMGuru, but James screwed
up here. He forgot to explain how to use these tags. That’s why it took me three
whacks before I really understood ASM some. Well, I’ll tell you now. Those four
lines of code define that you're gonna use the first statement instead of the
second statement. Here will be our complete header for the rest of the 83
specific tutorials.

.NOLIST
#define end .end
#define END .end ; standard header
#define equ .equ
#define EQU .equ
#include "ti83asm.inc"
#include "tokens.inc"
.LIST
.org 9327h

 As you see, the .inc files are put in the way shown above. Oh, in case you
haven’t noticed, anything after a semicolon is a comment (except inside a string).
(NOTE: If you don’t know either of those terms, please mail me your TI. You
don’t deserve it.) We will discuss the meaning of the code next tutorial.

No Duh! Guide to TI-83/+ Programming Page 7 of 7

Tutorial II
CALLing out and the meaning of Header
I just made that weird quote for the sake of weirdness

 Today we must learn the meaning of that code. As a starting place, here’s
the header:
.NOLIST
#define end .end
#define END .end ; standard header
#define equ .equ
#define EQU .equ
#include "ti83asm.inc"
#include "tokens.inc"
.LIST
.org 9327h

 You ask, “Uhh…m?” Well, it’s not that hard if you know.
.NOLIST – Means the following will not go to the calc, it is only for TASM to

see.
#define – Means to use the first part instead of the second.
#include – Includes the library.
.LIST – Put following code in final compiled version, TASM.
.org – Go to ticalc.org. Kidding. This says where in the memory the

program starts. On the TI83, this should (to my knowledge) always
be 9327h (h means it’s in hex, although you could use $9327).

call -- Runs the specified romcall.

Wot’s ‘call’?
 Wait a minute! We haven’t seen THAT before… Well, jump in to the first
full program! NOTE: I'm NOT paying for broken monitors.
.NOLIST
#define end .end
#define END .end
#define equ .equ
#define EQU .equ
#include “ti83asm.inc”
#include “tokens.inc”
.LIST
.org 9327h
 call _clrLCDFull ;yes, that IS an underscore
 ret
.end
END

Obviously, .end ends the code, not so obviously ret returns you to the
home screen. Yes, there are always 2 ends, and to avoid confusion, always put
them the way I do it. NOTE: You may notice that section is tabbed in. I’ll talk
about that later.

No Duh! Guide to TI-83/+ Programming Page 8 of 8

Compiling
 Anyone ever told you, “compiling is a pain”? They’re right. That file,
asm.bat, has already been made for you (luckily). Assuming you saved that file
as ZCLEAR.Z80, AHEM, hint, hint. (NOTE: You could save it as ZCLEAR.ASM, also.
It won’t matter, but ASM extension is also used for other assembly languages.
Never have the same named Z80 and ASM file in the same folder, as it will
confuse programs.) Anyway, go to the command line and type asm ZCLEAR and
press Enter. The case should be UPPERCASE, otherwise there will be lowercase
letters in your program name and your calc won’t let you use that. It will compile
and link your files in one step. Nothing should be wrong at this point if you’re
just cutting and pasting. Now send the program to the calc (you DO have a
Graphlink, don’t you?). DO NOT try to run it. First, go to [2nd] <CATALOG> and
look for the “Send(” thingy. Press [ENTER] (on the calc, stupid.). It should be
pasted to the home screen. Press [9]. Press [PRGM] and paste prgmZCLEAR to
the home screen. It should be “Send(9prgmZCLEAR”. Press [ENTER] and the
screen will clear (unless you did something wrong).
YAYY
YY
YY
YY! You
are technically a Starting ASM Programmer (If it worked). If it didn’t work, then
YOU did something wrong (cuz every other ASM Programmer out there couldn’t
possibly be wrong). Try repeating the process, see if you got a legit copy of
ionpak (maybe some prankster thinks it’s funny.), and if all else fails, contact
somebody else except me, because my email will be flooded with people dumber
than you who didn’t listen to that last part (NUDGE, NUDGE). If you did this on
the 83+, it won’t work (if it did, something is SERIOUSLY wrong).

Conclusion

Whew… You either worked your way (83) or read your way(83+) through
the hardest part of Beginning ASM. Pat yourself on the back, do a victory dance,
and take the 5 hour nap you deserve for this … wow, another actual ASM
programmer… Until you get to the Advanced level, almost nothing is this hard.

YOU’RE STILL READING THIS!? LOOSEN UP,
IT’S FIESTA TIME!!

No Duh! Guide to TI-83/+ Programming Page 9 of 9

Tutorial III
Code formatting and registers
The NEXT hardest part of ASM

Code Formatting
 Lets get the easy part down first. Anything except a label or a directive
must be tabbed in. You’ll learn what a label is next chapter. A directive is
anything with a period in front of it (most notably .org and .end). Asmguru says
only that, but I also assume that anything with a # in front of it also must not be
tabbed in (NOTE: If any British people get confused with the American
vocabulary, a. Sorry b. No, I'm not going to make a different UK edition c. I'm
glad to know that people on the other side of the Atlantic know about me, and
put up with this anyway). On to the hard part: REGISTERS.

Registers
 BUM BUM BUM BUMMMMMM… Even makes me look back and shiver… In
fact, AW GEEZ I CAN’T EXPLAIN IT! But other people can. Here is an excerpt
from Greg Parker’s TI-85 ASM tutorials, which should explain it understandably.

TI-85 Assembler Programming - Data and Memory
In other programming languages, you store data in variables. You can do stuff
with variables like adding two of them together and storing the result in a third
variable.

In assembler, variables aren't as simple. The "variable" is actually an abstract
concept. Inside the computer or calculator, variables don't exist. Instead, you
directly access the memory and store your data there.

On the TI-85, "memory" means the 32K of RAM that is built-in. This memory is
divided into 1-byte chunks. One byte allows you to store an eight digit binary
number, so the largest number you can store in each location is a binary
11111111, or 255 in decimal. The lowest is 0. If you want to use larger
numbers, you group several chunks together. One common grouping is two
bytes, or a "word". Two bytes together can hold a value between 0 and 65535
(2^16).
<83 has ~28K RAM, 83+ ~24K RAM - BRP>
Each one-byte chunk has a unique number, or address. We access these bytes
by using the addresses, just like we use variable names to access variables.
Addresses are usually given as hexadecimal numbers for convenience, so a
typical address might be $80DF. Addresses used with the Z80 chip are two
bytes long.

No Duh! Guide to TI-83/+ Programming Page 10 of 10

TI-85 Assembler Programming - Data and Registers
In the previous lesson, you learned about the memory, where nearly all data is
stored. Unfortunately, memory access is relatively slow for the processor. So,
when we want the processor to manipulate data, like add two numbers together,
we don't want to do it in the memory. Instead, we load the data into special
high-speed memory locations inside the processor itself called registers.

In the Z80 chip there are 14 registers. They have names instead of addresses,
and are called A, F, B, C, D, E, H, L, PC, SP, IX, IY, I, and R. The one-letter ones
are each one byte, and the two-letter ones are each two bytes.

For programmers, the most important register is the A register. A is also called
the Accumulator. A is the focus point for nearly all data operations. For example,
when we add two numbers together, one of them is stored in A, and the final
answer is also stored in A.

B, C, D, E are used for temporary data, like holding the second number when
adding. They are grouped in two-byte pairs - BC and DE - when we need to
store larger numbers, like memory addresses.

H and L are separate registers, but they are almost always used as the two-byte
pair HL and should always be used to store addresses when moving data
between the memory and the registers.

The rest of the registers are unimportant for now. Some of them are used by
the chip and not us. PC is the Program Counter. It stores which instruction is
being executed. SP is the Stack Pointer. It is the memory address of the top of
the stack. We will use the stack later, but we never actually change SP ourselves.
It is the Interrupt Vector, which I won't even try to explain. The R register is the
Refresh register. I won't explain it because I have no idea what it does!

F is the Flags byte. Each of its bits mean something different. For example, the
Zero flag bit tells us whether the last instruction generated a zero result. The
Carry bit tells us whether the last math operation required a carry. We will use
those two flags later. We don't use the other flags very often.

IX is used for special purpose memory access, which we might do later. IY is
used internally by the TI-85.
<I’ll explain IX and IY later –BRP>
That's how data is stored and used on the TI-85. The addressed memory
contains numbered one-byte chunks and is where data is stored. The registers
are high-speed named memory locations where data can be manipulated. In the
next lesson, you will learn the LD instruction, which is used to move data
between registers and memory and from register to register.

No Duh! Guide to TI-83/+ Programming Page 11 of 11

TI-85 Assembler Programming - The LD instruction
Now that you know how data is stored in assembler, you can learn how to move it
around. In assembler, you can't just assign any value to a memory location like you can
with variables. Instead, you have to use the LD instruction. LD stands for Load. It loads
data from one place into another.

There are several different ways to use the LD operation. The simplest one is loading a
specific value into a register. Here is an example:
LD A, 17

This gives register A the value 17. We can do the same thing with any register and any
value. The value can be hexadecimal if we want.
LD B, 32
LD C, $18
LD H, 213

We can do the same with any register pair:
LD BC, 14238
LD HL, $80DF

Another way to use LD is to load data from one register to another:
LD B, A

This puts whatever value is in register A into register B. As you can see, with any use of
LD, data is moved right to left - 17 into A or A into B or whatever. We can load any
single register into any other register.

More complicated uses of LD involve moving data between the memory and the
registers. As you know, the memory is accessed through addresses. The LD instruction
is used to load data between a register and a memory location specified by an address.
This address can be a raw value:
LD A, ($80DF)

This will load the value stored at memory location $80DF and put it into register A. The
parentheses around the number indicate the number is being used as an address, not as
a value.

In the previous example, loading a single register from memory using a specific address,
we have to use register A. This means that we cannot load any other register directly
from memory. Instead, we have to load from memory into A and then from A into the
register:
LD A, ($80DF)
LD C, A

We can also load two bytes of data from memory at once:
LD BC, ($80D3)

This loads two bytes of data from ($80D3) into register pair BC. Actually, it loads from
two memory locations - ($80D3) into B and ($80D4) into C. When loading a pair like this,
we can use any pair we want. Another method is to use the register pair HL to hold the
address for us:
LD HL, $80DF
LD A, (HL)

The first LD loads a value into HL. The second one uses that value in HL as an address,
and loads data from that address into A. It has exactly the same effect as the previous
LD example. Notice that $80DF does not have parentheses around it. In the first LD,

No Duh! Guide to TI-83/+ Programming Page 12 of 12

$80DF is only a value, not an address. Only in the second LD is it an address, so we put
parentheses around HL to show its value is an address. We can load from memory into
any register, but we cannot load into a register pair or use any other register besides HL
to hold the address.

Now let's move data from the registers back into memory. The simplest way is to use an
immediate value for the address:
LD ($80DF), A

This loads the value in register A into memory location $80DF. When moving data from
register into memory this way, we are restricted to using the A register. In other words,
we can't load register C or any other directly into memory - we have to load the register
into A, and then A into the memory.

We can also store a register pair into two memory locations:
LD ($80DF), BC

Again, this loads into two different memory locations. We can use any register pair here.

As above, we can use a register pair to hold the address we are using:
LD (HL), 123

This loads the value 123 into the memory location whose address is stored in HL. We
can only use HL for this.
LD (HL), A
LD (HL), E
LD (BC), A

Here are three examples of loading a register into memory whose address is not
immediate. We can use HL to store the address and load from any register or we can
use any register pair and load from A. We cannot do both, like:
LD (BC), D ; this is WRONG!!!!!

We are stuck with either HL for the address or A for the data.

I think that about sums up the different uses for LD. It is one of the most versatile and
probably the most important instruction. There are more exceptions to most of the
examples I gave, but most of them deal with the I or R or SP registers, and we won't be
dealing with them. If you really want to know, find a Z80 programming book and look it
up yourself.

>>Back to ME. I could have rewritten this, but THANX, GREG YOU’RE A
LIFESAVER! Only after reading this did I finally understand registers, so I made
you do it, too. I did not rewrite this, so then I could give thanks to Greg
(whoever you are).

NEXT: Displaying Text.

No Duh! Guide to TI-83/+ Programming Page 13 of 13

Tutorial IV
Displaying and formatting text
Finally, actually DOING Something!

Displaying Text

Hmm, to display text you’ll need to learn about labels. Now, I’m pretty
sure that you’ve heard in conventional programming that “LABEL+ GOTO = BAD”.
But forget that for ASM, because they are necessary!
...if you haven’t made a template for this, maybe you should...
 call _clrLCDFull ;Clear the screen.
 ld hl,0003 ;Put 3 into Hl.
 ld (currow),hl ;Put HL into cursor row.
 ld hl,mem ;Loads text in hl.
 call _PUTS ;Ends string....
 ret ;Return to basic mode.
mem: ;This is your label.
 .db " Mem Cleared",0
.end
END

 Simple enough. Clears the screen, (CURROW) is the cursor’s row, WHAT?
Don’t check anything yet, because mem isn’t a value OR a register. It’s a label.
You can see how to use labels in the code. The .db just means the rest is data,
in bytes. Here it just happens to be in a string (you have to terminate strings
with a 0). Compile and run it, should put up a Mem Cleared message (with a
blatantly obvious Done). To get rid of that Done, make a Basic program:
Send(9prgmZMEMCLR
Disp “”
Output(5,13,“ “)

Ha! You can scare quite a few morons with that (or at least impress them with
the lowercase)! But since this tutorial is only half a page, I have to put in more.

Text Formatting
 call _clrLCDFull
 ld hl,0000h
 ld (PENCOL),hl
 ld hl,str1
 call _vputs
 ld hl,0001h
 ld (CURROW),hl
 ld hl,0000h
 ld (CURCOL),hl
 ld hl,str2
 call _puts
 ret
str1:
 .db "Small and...",0
str2:
 .db "BIG!!!!! ",0
.end
END

No Duh! Guide to TI-83/+ Programming Page 14 of 14

The spaces after the BIG is to get rid of the Done. You see, small text is pretty
similar to big. Still feisty?
 call _clrLCDFull
 set textInverse, (iy+textflags) ; Sets inverse.
 ld hl,0000h
 ld (CURCOL),hl
 ld hl,str1
 call _vputs
 res textInverse, (iy+textflags) ; Resets inverse.
 ld hl,0100
 ld (CURCOL),hl
 ld hl,str2
 call _puts
 ret
str1:
 .db "Reverse Text.",0
str2:
 .db "Normal Text. ",0
.end
END

Pretty obvious. Makes Inverse Color Text. For the sake of your sanity, I won’t go
into what set, res, and that iy+textflags mean … yet.

NEXT: 83+ Programming and Still more clarity!

No Duh! Guide to TI-83/+ Programming Page 15 of 15

Tutorial V
Unfinished business
I’m in trouble now!

To the 83+ users: I lied to you. There is a good reference on 83+ Programming
for TI-OS. Ti-83 Plus Tutorials by Jeff Chai. If you want, go read it, but you only
learn 83+ from that and no more. If you want to learn 83, 83+, Ion, and
Gameboy from one file, there will be no choice but ME. I AM THE MONOPOLY!
HAHAHAHA! Well, I could rewrite the tutorials, but it would make it too hard for
beginners, right? Well, I’ll discuss the differences between the 83 and the 83+.
So SIDDOWN with a cup of Java (anyone), Jolt (rEaL programmers), or tea
(Trekkers and Hitchhikers :))

83 vs. +

Sounds weird, but on the 83+ you actually compile the program ON THE
CALCULATOR. Go to ticalc.org and download objhex.exe and place it in your
“ionpak/IONpak TI-83+” folder (NOTE: The OBJ83 program will work too, but
then you have to change the batch file). Make a batch file, “plusasm.bat”
@echo off
echo ----- Assembling %1 for the TI-83 Plus...
tasm -80 -i -b %1.z80 %1.bin
if errorlevel 1 goto ERROR
echo OBJ to HEX conversion
objhex %1.bin > %1.hex
echo ----- Converting to hexadecimal format...
echo HexaDecimal version is %1.hex
echo Task Complete!
goto DONE
:ERROR
echo ----- Errors were found!
:DONE
echo ----- Done

That all set, sit back and read.
 Instead of “CALL _romcall”, use “B_CALL(_romcall)”. TI-83+ ASM
programs are limited to 8K (unless you’re programming in Ion). TI-83 and 83+
programs can’t use the same code (unless you use Ion, or you use my future
project, PseudASM) without porting. Since the 83+ has more RAM areas that are
safe to use, programs that use these may need heavy modifications (or even be
impossible) to port. Most romcalls are identical (as far as I know), except maybe
ones involving the archive, and maybe others. You’ll also need a new include file.
Your header is the same, but replace 9327 with 9D95, and ti83asm with
ti83plusasm. If you don’t have that file, I have included it with this guide.
(NOTE: ti83plusasm should be used; it is modified by Jeff Chai. Ti83plus.inc is
TI’s official release, but then you’ll have to use something besides B_CALL and
you’d have to figure it for yourself)

No Duh! Guide to TI-83/+ Programming Page 16 of 16

 Hm, hm, confusing. Trust me, there are FIVE ways to clear the screen,
and they all do it differently! So only use the ones I use (as they will usually be
the most relevant).
.org 9D95h ;Just a reminder

 B_CALL(_homeup) ;Bringing up the home screen
 B_CALL(_clrlcdfull) ;Clearing the screen
 ret ;Returning to TI-OS
.end ;End of program
END

To compile this, run plusasm.bat with this (It must be .z80, unless you
modified the batch file yourself). It generated a .hex file (unless something went
wrong). Open it in Notepad (or whatever text editor you use) and copy the
contents. Make a new program in Graphlink. Type AsmPrgm and press Enter.
Paste the hex files contents. Save. Send it to the calc. To run it, go to [2nd]
[CATALOG] and find “Asm(”. Paste it to the home screen, paste your program to
the home screen and run! (Asm(prgmZCLEAR)). If you would like to compile it,
go to the catalog, and put “AsmComp(” on the screen. Press comma. Put your
program name on the screen. Go to the catalog and paste “prgm” on the screen.
Type in the desired destination program name (It can’t be a program that
already exists.) Wait as it compiles. Now run the newly generated file
(Remember, you have to run it as Asm(prgmDESTPRGM)). Ooooooo,
aaaaaaaaah.

BLAAAAAAAAAAAAAHHHHHHHHHHHHHHHHHHHH. Sorry for boring you

out of your guts, but I hope now TI-83+ users can use ASM now. Sorry if you
had to drink 9 cups of Joe, Jolt, or Earl Grey. It worth it, no?

NEXT: Something fun!

No Duh! Guide to TI-83/+ Programming Page 17 of 17

Tutorial VI
PCX to ASM
A fun Reward.

All that hard work deserves a reward ;). For this, you will need: Pic83
(available from ticalc.org) and the sufficient imaging programs needed to make
the pcx file (I use 20/20, but the vocabulary is general.).

Okay, get your picture. Go to your graphics program and resample the
image to 96 by 64 pixels (NO, paint is not good enough). Now save the file to a
PCX that is 256 colors. THAT IS IMPORTANT! Now at the command line, type:
Pic83 <source pic> <destination text>

And press enter.
Now do this code…
 ld hl,picture
 ld de,PLOTSSCREEN
 ld bc,768
 ldir
 call _GRBUFCPY_V
 call _getkey
ret
picture:
 paste pic83-generated code here!
.end
END

This came from ASMGuru. Not much help in learning to program, just
helps development time. A few notes (skip this paragraph if you’re confused, its
not really necessary.). PLOTSSCREEN is a memory equate (for 8008h). It works
like defining your own constant in programming, it’s just something TI did to
make things more memorable. LDIR takes the address at HL, and copies the
data there to the address in DE. It does this BC number of times. In our (No! I
mean James’!) Program, we load the address of the picture into HL,
PLOTSSCREEN is a memory equate to a section of memory that is where the Ti
looks when displaying the screen. So, we want our picture to go there. Since
PLOTSSCREEN is 768 bytes (96 times 64 divided by 8 to make it into bytes),
that's how many times we want the instruction to execute. So we put that in BC.
When the instruction executes, it copies the first byte at HL to DE, then
increments HL and DE, and decrements BC.
 You can surprise friends with their yearbook photo! Its helps with splash
screens, too.
JAMES’ WARNING: When you switch off the calculator whilst this program is
running, it will quit, but it won't reclaim the memory! Well, that is my
explanation! The program resides in the memory, just sitting there, taking up
space. You will have to reset your calculator to reclaim it. BRPXQZME has
nothing to do with this.
NEXT: Binary, Decimal, and Hex numbers

No Duh! Guide to TI-83/+ Programming Page 18 of 18

Tutorial VII
Binary Decimal and Hex numbers
Just so you know the notation, folks

Not much to say here, but maybe you have a hard time understanding all
these different types of numbers. No problem.

Binary
 Binary numbers are computer code, you know … 10010111. Binary
numbers are like regular numbers, BUT instead of the place values being in
powers of ten (ones, tens, hundreds, etc), they are in powers of two (ones, twos,
fours, eights, etc) and the reason is because there are only zeroes and ones. Ten
values are used for decimal numbers, making it base ten and making the places
in powers of ten. Two values are used for binary, making it base two and making
the places in powers of two. Mostly binary is used to deal with bytes, eight
binary digits. Eight digits make 256 values, 0 to 255. You can signify a binary
number by putting the letter b after it, or put a % in front of it, but NOT BOTH.

Decimal
 The numbers we use, know and love …okay maybe hate. I think you
already understand these … do you? To signify a decimal number, either put a d
after it, or just leave it without any extra symbols.

Hexadecimal
 It is base sixteen. Okay, kids can we count to fifteen, please? 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, F! Good! Two Hexadecimal digits make up a byte.
Signify a Hex number by putting a $ before it or an h after it.

If you’re still confused, go look for a better explanation, since I’m not
good at explaining this kind of stuff. This is just to be able to consider the
tutorials complete.

No Duh! Guide to TI-83/+ Programming Page 19 of 19

Tutorial VIII

NOTE- Emergency release 0.01 – due to school and
terrorists, the project is delayed. The alarming 1.2K+
downloads made me post this incomplete version.
The .inc files are not included. Sorry.

