TI-BASIC TIPS AND TRICKS FOR THE TI-83+

1. Unnecessary Parentheses ‘)’, Braces ‘}’, Brackets ‘]’ and Quotes “ (PBBQ’s)

There are four main places/ways that you can remove PBBQ’s:
1) At the end of a line
2) Before the store /->/ operation
3) If you change all colons ‘:’ that are not inside quotes to carriage return
4) If you rearrange your statements so that the PBBQ’s are at the end
(NOTE: Each PBBQ that you get rid of will save you one byte.)

Example 1:
Disp “Hello”
can be
Disp “Hello

Example 2:
"STORES"->Str1
can be
"STORES->Str1

Example 3:
AxesOff:Disp "TURN:":FnOff
can be
AxesOff
Disp “TURN:
FnOff

Example 4:
(B+C)/D
can be
D[X^-1 key](B+C

Limitations: you must use PBBQ’s when you’re doing order of operations, lists or matrices.

2. Implicit Multiplication

When you are multiplying two variables together do not use the multiply sign ‘*’. The calculator already multiplies the two variables together.

Example:
5*A->A
can be
5A->A

--
3. Assign Variables to Numbers Used Many Times
--
Many times you will have to use a number repeatedly in a program. To save memory you can assign that number to a variable at the beginning of your program and then just call that variable whenever you need it. This also works for strings that are used a lot.

4. Do Calculations Ahead of Time

When you do calculations try to combine them onto one line instead of doing them one step at a time. It will often save you space and time.
Example:
9²->X
3->A
XA->X
can be
243->X

5. Small E

When you are doing multiples of ten, use the small E to save bytes.

Example:
10000
can be
E4

6. Expr(Function

One of the most unknown and unused functions is the Expr(function. What this function does is allow the programmer to store an expression to a string (includes graph equations) and then execute the string. Since you may use graph equations, you just got yourself 28 “extra” strings to use for text and data storage. But if you use graph equations to store data in a graphics-based program, remember to turn the functions off with FnOff.

Example:
Input “Formula:”,Str1
Disp Expr(Str1

7. Disp Function

When you use the Disp function you can output text in two ways—separate or together.
The two different ways look like this:

Example 1:
Disp "HELLO
Disp "WORLD

Example 2:
Disp "HELLO","WORLD

Because there is no difference in size between the two ways, the first way is preferred since it is easier to read. The place where you can shave off a byte is using the Pause function. When using the Pause function, eliminate the last Disp function and display the data using Pause. You can also have the Pause command display variables. The last thing you can do with the Pause command is allow the user to scroll left and right to read a long string.

Example 3:
Disp "HELLO
Disp "WORLD
Pause
can be
Disp “HELLO
Pause "WORLD

Example 4:
Pause “This text scrolls right and left and allows you to put a message!

The Display function also allows you to display text and variables at the same time.

Example 5:
Disp ”Hello World”, A

8. Don’t Use the Goto function

There are four different functions that you can use to make loops. The four functions are: For, Repeat, While and Goto. The slowest one and the one which you should never use is Goto. The way the Goto function works is it starts at the top of the program and searches down through the program until it finds the corresponding label. (In case you are wondering, the order of how fast the functions are is: For, Repeat/While, Goto.)

9. DelVar Function

In a program where you use variables, strings, lists or matrices, you should delete them at the end of the program. The reason is that people don’t want unnecessary things hanging around on their calculators. To delete the unwanted variables you can use two methods—DelVar or ‘0->(variable)’. The DelVar method is better and should be used because it saves one byte. Besides that reason there are actually two other reasons to use the DelVar function: 1) The DelVar function does not need a new line following the variable name and 2) You can link any function onto the end of the last DelVar function.

Example 1:
DelVar A
DelVar B
DelVar Z
can be
DelVar ADelVar BDelVar Z

Example 2:
DelVar Str1DelVar A
Pause
can be
DelVar Str1DelVar APause

Limitations: If you use the DelVar function on lists, matrices or strings it destroys them.

10. Use Return Instead of Stop

Never use the Stop function unless absolutely necessary. If you can, organize the program so a normal termination is a "fall off the end.” This will save you two bytes. If it is not possible, use a Return, as it allows your program to be called from other programs.

11. GetKey Routines – Repeat vs. While

There are two different functions that you can use for making a getKey routine—Repeat or While. Repeat happens to be the better of the two because when you use it you do not have to set the initial value to zero. Also, the Repeat function is executed at least once whereas the While function will not be executed at all if the variable to be tested happens to be the desired value before the first go-round. Speed-wise, Repeat and While are the same. [NOTE: Repeat keeps going until the condition is true and While keeps going while the condition is true.]

Example 1:
Repeat Ans (include = and desired key here, if needed)
getKey->K
end

Example 2:
0
While not(Ans (include = and desired key here, if needed)
getKey->K
end

If you want a “Press Any Key” function, use this:

Repeat getKey (include = and desired key here, if needed)
End

If you want a never ending loop, use these:

Repeat 0
or
While 1

If you use the getKey function and try to make it so that it will repeat until the key(s) is/are un-pressed it will work with the arrow keys or the ‘del’ key.

12. The Store /->/ Command

The store /->/ command stores something into the memory location specified. It also happens to slow down the calculator. Therefore, you should remove as many stores as possible, especially if they occur within a loop.

13. For Loop

When using a For loop omit the step argument as much as possible, unless it is absolutely necessary. It will save you one byte. Also, you can use the For command to delay your program for a set amount of time.

Example:
For(X,1,10,1
End
can be
For(X,1,10
End

14. Lowercase Letters

Lowercase letters look visually pleasing; however, they have three drawbacks:
1) You cannot store data to them
2) You must access some of them using an assembly program such as MirageOS
3) They are two bytes instead of the one byte for uppercase letters

15. Extra Variables

Sometimes when doing a program you might run out of variables to use. If that happens there are many different places you can go to for more variables. Some are:
1) Create lists or matrices and just use/manipulate them
2) Window variables—hit VARS and then ENTER
3) Finance variables—hit APPS and then go into the Finance application
[NOTE: You can also use most of them as characters.]

16. Text(Function

The Text function allows you to display both variables and text at the same time with just one Text command. This can be used to show fractions or percents or anything you can think of.

Example 1:
Text(Y,X,A,"/",B

17. Efficient Way to Shuffle a Deck of Cards

The smallest way to shuffle a deck of cards is:

seq(X,X,1,52->L1
rand(52->L2
SortA(L2,L1

18. Internal Subroutines

Subroutines are programs that are called by other programs to do a particular task. The goal of using subroutines is to keep your program going as fast as possible. Using subroutines creates very readable code and it also helps in the debugging phase. However, if your subroutine is only used once by your program than combine it into your program. All you have to do is paste the code from the subroutine in place of the program call. On the same line, separate a function if it will be called many times. If you don’t want the hassle of having to give someone all of your subroutines for your game in order for them to use it then you might want to think about using internal subroutines. At the beginning of your program put something like:

Example 1:
If Q=2.351 // or any random number
Then
0->Q // prevents the program from messing up if the user breaks during execution
Return
End

... and when you want to call the subroutine:

2.351->Q
progGAME

You can even have multiple subroutines by using different numbers for Q. Unlike Goto, the If-then statement in the subroutine is automatically terminated when it hits return, so you won't get any memory errors. It's also faster than Goto.

19. Logic Statements

A logic statement is the part that comes after the If statement or after Whiles and Repeats. The only two possible values that you can get from doing a logic statement are 0, which means false, and 1, which means true. (Besides 1, all numbers except 0 return a value of 1.) There are often two ways in which you can do a comparison—the efficient way or the inefficient way. Below are four examples of the inefficient way and then the right way. [What the comparisons are: 1) comparing something equal to 0; 2) comparing something that is not equal to 0; 3) comparing 3 numbers separately with the same number; and 4) comparing 3 numbers together with the same number.]

Example 1:
If X=0
can be
If not(X

Example 2:
If Xø0
can be
If X

Example 3:
If A=X or B=X or C=X
can be
If sum(X={A,B,C

Example 4:
If A=X and B=X and C=X
can be
If min(X={A,B,C

20. Using Conditionals Instead of ‘If’

Similar to the logic statements are the conditionals. Often times, if you are only changing a variable—adding to it or subtracting from it—you can replace the If statement with a condition.

Example:
If K=26:X+1->X
can be
X+(K=26->X

These two logic statements are the same because if K=26, then (K=26) will equal 1 (true), so it will add 1 to X. If it’s false it will add 0 to X, not changing it. However, the second method is not always better. If you use it instead of an If statement, that doesn't have to store a variable every loop, then it will actually go slower. This is because it may unnecessarily be storing a zero into a variable instead of just checking an If statement.

21. Eliminate Annoying Things

If you want you to get rid of the “Done” message after you exit your program you can use Output(1,1,”” as the last line of your program. If you want to get rid of the run indicator you can use Text(0,90,"[one space]" in a getKey loop.

22. StoreGBD & RecallGBD

Use StoreGBD# as the first line of your program and RecallGBD# as one of the last lines. This will save and restore the user’s graph settings so that they won't lose anything. (NOTE: You don't need this if you don't use the graph screen.)

23. Ans Variable

If you want to speed up your program while doing calculations, you can use the Ans variable. To use Ans, put the calculation in a line all by itself, then it will automatically be stored into Ans saving the need for storing the calculation into a variable. [NOTE: You should only use Ans if it involves changing just one variable or thing.]

Example:
If 8>C
"HIGHER
If 8<C
"LOWER
Output(4,2,Ans
can be
"HIGHER
If 8<C
"LOWER
Output(4,2,Ans

24. GetKey Values

If you want to know the getKey values you can look in the user's manual for your calculator, but for easier reference just combine the row number of the key with the column number. For example, the '5' key is located in row 8, column 3, therefore its getKey value is 83.

25. Output Function

If you do not want to use the Disp function, the other way to display text on the homescreen is to use the Output function. Using the Output function allows you to put text anywhere on the screen and in case your text goes over the edge it is automatically wrapped to the next line. [NOTE: Any text past position row 8, column 16 will not show.]

Example:
Output(1,1,"The only way to do this is by counting the spaces.

In case you want to output numbers, you don’t need to include quotes.

Example:
Output(1,1,123

26. Commas

The comma “,” is very useful for programming your calculator. It can reduce the size of your program and make it quicker to make programs. Here are some operations that you can use commas with: Prompt, mean, min, ClrList, FnOff, FnOn, PlotsOn, PlotsOff, Text

27. Pt-On Function

The Pt-On function turns on a point at coordinates X and Y. The mark is optional but if you decide to use it there are three possible appearances that it can make. They are 1, 2, or 3, where 1 makes a dot, 2 makes a 3x3 box and 3 makes a cross. [NOTE: If you just want a dot then skip the mark because it is not needed.]

Examples:
Dot—Pt-On(X,Y
Box—Pt-On(X,Y,2
Cross—Pt-On(X,Y,3

28. Graph Screen dimensions

The graph screen’s dimensions are 95 pixels by 63 pixels (includes the 0 pixel). In order to best make use of the screen you have to set the screen to the right dimensions. The best dimensions for the graph screen are: 0->Xmin:0->Ymax 94->Xmax:-62->Ymin
Using these dimensions makes it so that you can use the same coordinates (except make the X’s negative with lines) for lines, points, text and pixels.

29. Turning On/Off Pixels

If you want to turn pixels on and off there are several ways to do it. One way is to use the Line command. The Line command has the following syntax: Line(X1,Y1,X2,Y2,[0 for pixels off]. The Line command is the fastest way to turn pixels on and off. The next fastest way to turn pixels off [NOTE: only turns pixels off] is using the large text on the graph screen. The large text on the graph screen has the following syntax: Text(-1,X,Y,”[X # of spaces]”. For each space it turns off a 6x8 block. The next way to turn pixels off is the same as the last way except use the regular small text of the graph screen. The syntax for the small text is: Text(X,Y,”[X # of spaces]”. For each space it turns off 5 vertical pixels. The last way you can turn pixels on or off is by just using the Pxl-On and Pxl-Off functions. The syntax is Pxl-[On or Off](X,Y). The last way is not recommended because it is very time consuming.

30. Graph Screen Input

If the graph screen is showing during your program you can put the command Input on a line by itself and then you can move the pointer around. If you press enter you get the coordinates of the pointer stored into the X and Y variables.

31. Storing Large Numbers

If you want to store the same large number in one variable (i.e. A) to another (i.e. C) you don’t need to write out the number both times. Instead store the large number to A and then store A into C.

Example:
78494->A
78494->C
can be
78494->A
A->C

32. Built-in Keys

On the calculator there are many keys built in that should be used more. One example is the squared-sign key. Often times you see people do ^2 which is inefficient and should not be used when the calculator already has a function that does that. Another example is the e^(key. People sometimes write it out using e^# but that is inefficient as well. Yet another example is the 10^(key. The last example is using the superscript-3 character rather than the ^3 method, which is often used.

33. Least Integer Function

To get a least inter function, do this:

Example:
-int(-number)

34. Homescreen text on Graph screen

To get homescreen-size letters on the graph screen, do this:

Example:
Text(-1,Y,X,"your text here

35. Speed up Division by Multiplying

If possible, multiply instead of dividing. This results in saving a few bytes and a slight speed gain. The time when you should not use multiplication instead of division is if the division involves fewer characters than the operation written out as multiplication.

-- Dividing by two works
Example 1:
(X+1)/2
can be
.5(X+1

-- Dividing by 5, 10, 100 and other numbers whose inverse (1/X) have few digits works
Example 2:
X/5
can be
.2X

36. How Many Digits in a Number

To find out how many digits are in a number, do this:

Example:
abs(int(log(number or variable))+1

[NOTE: This will not work for numbers with decimals.]

37. Skip Str>Equ(function

If you want to put a string into a Y# equation you don’t need to use the Str>Equ(function. Instead, you can just store the string into the Y# equation.

Example:
Str>Equ(Str1,Y1
can be
Str1->Y1

--

38. Efficient Programming—Good and Bad

--

When programming in TI-BASIC, the goal is always to use the resources you have available in the most efficient way possible. What efficiency means varies slightly for each program genre; speed is most important for games, while size is most important for most other programs. Besides the slight variance between games and programs of what the most important aspect of efficiency is, there are general guidelines of what efficiency means, which apply to all programs. Below is a general outline of what is good and bad programming. [NOTE: They are not listed in order of importance.]
Good

1) Original

2) Runs fast

3) Small in size

4) Easy to use

Bad

1) Unoriginal

2) Runs slowly – uses too many If statements and Goto’s & Lbl’s

3) Big in size

4) Contains errors

39. Angle values in List

If you use the tangent, sine, or cosine function in programs you might notice they aren’t that fast. A better way to do it is to store the values in a list and then recall them from the list.

41. And & Or Statements

When doing comparisons you often have to do something when “this equals this and that equals that” or when ”this equals this or that equals that.” Well, you can leave out the And & the Or statement and replace them with the multiply sign ‘*’ and the addition sign ‘+’. [NOTE: This does not save you any bytes; it is just a trick.]

Example 1:
If X = 1 and Y: 1->C
can be
If (X = 1)Y: 1->C

Example 2:
If X or Y = 5: 1->C
can be
If X + (Y = 5: 1->C

42. List Detection

If you want to see whether a list exists or not (i.e. for setting up your program) or check to see if this is the first time that the person has run your program just create an install list.

Example:
3->dim(Linstall //or whatever length you need for all your variables
If not(Linstall(1):Then
//this is first time they run program
//put setup code in here.
1->Linstall(1) //don’t forget to put this in the setup
End
--

43. Can Store to One List Element Higher than Exists

--

Say you have a list with at least one place. If you want, you can store to one list element higher than exists.

Example:

3->dim(L1

Input A

A->L1(4

NOTE: This will create a fourth element in list 1, and then store A in the fourth element.

44. How to Protect a Program

Say you spend a lot of time on creating a TI-BASIC program and you want to make sure that when you release it at your school no one can mess with it. What can you do? Protect it, of course. The first step is to edit lock your program. Make sure you never give someone an editable version of your program. The second step is to put a security function in your program.

First, you have to know that there is a hidden variable called n. You can access n under the Catalog menu. (I have not found n to do anything or be used for anything by the calculator, but it is possible that it does.) That's just a precaution though. For the most part, it seems to be a fairly reliable place to store data. After resetting a calculator, n is 0. If n does not equal zero then it is likely that there is another program using it. You should obtain a copy of that program and rewrite it so it is uses another variable.

OK, so what we know is that n starts at 0. Therefore, all non-authorized calculators have n=0. Add something like this to your program:

ClrHome
If n(not equal to)20:Then //Say 20 is "safe"
If n=4:Then //If the fifth time it has run (has not incremented by 1 yet)
" //Leave it with just the quotation mark; do not add a space.
expr(Ans //Display Error message!
End
n+1->n //increment counter
End

That's it. The above code will cause an error message to be displayed, unless you have previously set n to 20. You can change this however you want to fit your needs. Since the increment comes after the error, it will continue erring each time it is run. When setting n, you should do so from the home screen. I recommend you go to the Memory menu and select "Clear Entries" and then clear the home screen afterwards to hide your tracks.

--

45. Create a List without the “L” In Front

--
When you store to a custom list, usually you need the little “L” in front. However, this is not true. If you just have a letter or a number that is being stored to, it will actually store the list data to a list with the letter or number’s name.

Example:

{1,2->LA

can be
{1,2->A

46. Miscellaneous Tips

Here are a few tips for general use:
1) Avoid using labels of more than one letter
2) Avoid using lists other than L1, L2,…, L6 (only use named lists to save something)
3) Avoid starting programs with long names
4) The best way to get the most efficient programs is to build two different versions of a subpart of the program and check which is faster and smaller.
Instead of storing “Brian” in Str1, store the Getkey values of the name into L1 by using {42,75,61,42,71}. With something that will be used over and over again however, I would still use a string. But this is better if you want to save the game.
