How to Make Quality Games FOR REALZ

by Raylin [Ray Perry]

Foreword

In the strange and odd world that is the battlefield of calculator games, I have seen games get shot down, not even looked at, and buried in the catacombs of ticalc.org's file servers. So, here are some tips to get you back on your feet and kick some serious butt in the calculator game development realm. 

Your Arsenal of Badassery

First off, download and install EVERYTHING the archive that is inside of the file you downloaded. Ask no questions. Just do it.

The first of your weapons is the legendary Doors CS shell. This shell is truly the best of the best. Before recently, I didn't pay much attention to Doors but, I was enraptured by Detached Solutions' MirageOS. Besides the fact that EVERYONE who knew anything about calculator games had that app, it had been around for a very long time and was still used. But, Doors CS 7 came out recently and quite frankly, I was amazed. Not only did it effectively replace the fabled apps (xLIB, MirageOS, Celtic III, and some of Omnicalc), it allows you to run programs from the homescreen, regardless of status. Archived, ASM, it doesn't matter. Just run the program like any other program and it will work flawlessly. Needless to say, this is a great investment and a huge step in the right direction for great calculator games. Thanks to KermMartian for devoting so much time into this program. If you need help, just go here: http://cemetech.net. Register, introduce yourself, and ask your question. They won't bite.

The next weapon isn't much of a weapon as it is a tool. A GroupTool to be exact. This is for those people who lose data from having corrupt groups and the like. This APP can extract individual parts and programs from a group and move them to RAM or Archive, depending on what you feel like at the time. Pretty crucial. Courtesy of Brandon Wilson.

The next deadly weapon is Axe Parser. Words cannot describe the epicness that this program creates. This APP is actually a compiler and you must write your source programs in a completely different and faster language. There is documentation inside of the folder for your perusal. Big ups to Quigibo (aka Kevin Horowitz) for his efforts. Oh. Did I mention the automatic backup system Axe has? (P.S. There is a contest going on at http://omnimaga.org right now that will end on September 16th. Go to the site, register, and join the contest! :) )

The final weapon is the savior. The messiah of programming. CalcSys. If you don't know what it is, you don't need to use it yet. So, no review for you. :)

These APPs are your four horsemen. Use them wisely.

The Languages you can Program in

Just as a primer, there are a few things you should know about programming calculator games. You can program them in one of the four languages: pure BASIC, hybrid BASIC, Axe, and pure z80 ASM. 

Pure BASIC is just what you think it is. It is the native language of the TI graphing calculators and requires no third-party APPS. Just out-of-the-box programming. (c wat I did thar?)

Hybrid BASIC is BASIC enhanced by using third-party APPS like xLib and Celtic III. (Or Doors. Doors pretty much blows all of those out of the water.) These are usually identified by enhanced graphics and response time between said graphics and key input.

Pure z80 ASM is the processor level programming that requires a computer to create. While it is the most flexible, it is the most difficult to code and has the steepest learning curve.

Axe is the black sheep. But, a very awesome black sheep it is. While this uses the TI-BASIC editor to provide a graphical interface, it IS NOT TI-BASIC. If you activate the header, Axe takes over and becomes the dominant language in the program, ready for compilation.

How to Program Quality Games

NOTE: Make sure you back up your games!

The basic game development process is this:

*Plan: No one seems to do this enough. Plan out your games. Create your storyline here if necessary. Make sure you have a basic idea of where you're going with this game. Make sure that you've done all of your balancing ahead of time. Then, make sure you know the order of which you'll finish your programs.

*Design: Draw your mockups! Make sure you have a good idea on where your sprites will be and how the battle system will work.

*Draw: Draw all of your sprites before you code. If that seems too daunting, draw enough sprites to start coding without interruptions.

*Code: Time to actually code the game. Program in subroutines so that nothing bad will happen.

*Test: Go at it. Make sure everything looks good.

*Stress: Now, test it again. Stress it. Make stupid mistakes. Make sure it is ready to be released and make sure it is of quality.

For more of these kind of tips, go to Appendix A.

How to Stay Afloat in the Sea of Games

Promote. Just join forums and start making topics about your game.

Etiquette says that you make only one topic of your game on a forum at a time.

Post the game to as many forums as you want but don't spam the “Post new topic” button.

Please.

So, that's all I have for now.

If you ever need help, don't hesitate to go to http://cemetech.net or http://omnimaga.org. They are great communities to join and I guarantee that your question will not go unanswered.

Appendix A: Raylin's Rules to Making RPG's

Rule 1: If you're a beginner, DO NOT make a Final Fantasy/Pokemon/Borderlands/Ultima/<insert console game here> clone. The sheer amount of content will crush you, your spirits, and your lifespan. This also means don't try to tackle a huge project if you haven't don't enough experience.

Rule 2: Always, always, ALWAYS code the battle engine first. Don't even worry about story right now. Get characters and a couple enemies and make that beast of a battle system now. It will kick you in the face later if you don't do it early.

Rule 3: Make sure your menus/GUI and button configuration are the same throughout.

Rule 4: BALANCE YOUR FORMULAS! Attack, Defense, Speed, Stat Gain, Level Up, EXP... Make it all realistic. I shouldn't be able to kill a LV 10 with an uber-randomed LV 2. Make sure your curves are parabolic but not super steep.

Rule 5: Having Japanese-sounding names in an RPG doesn't make a good game. It's gameplay that does it. Make sure your gameplay is solid.

Rule 6: Immersing the player doesn't involve super-awesome graphics. It's the fusion between storyline and gameplay. Innovation is key on this point.

Rule 7: Draw ALL of your sprites and tiles first!

Rule 8: Have a basis to start on when it comes to stats. Just because you know a Fighter's stats at max level doesn't mean that should be your starting point. Work from the ground up.

Rule 9: Write your story on paper first. It will help organize your thoughts.

Rule 10: Code your program in subroutines. I don't care if you hate them. It will help.

Rule 11: If you are making a pure-BASIC game with limited access to archive memory, make sure that NPC convos are as short as possible, while making sure to not destroy your storyline. DO NOT USE LOWERCASE LETTERS! Otherwise, prepare to run out of memory very fast. Text takes a ridiculous amount of memory.

Rule 12: If you are making an ASM/Axe game (doesn't apply to ASM Flash APPs), make sure that as many things as possible in your RPG is in data form. The NPC/Event text, enemy names/stats, monsters encounters possible in each areas, NPC movement patterns, battle background images, not just the sprites and maps. Data doesn't count towards the 8/16 KB executable code limit in 8xp/8xk executables, respectively. If you just hard-code everything with If blocks, prepare to run out of code space very fast!

Rule 13: Don't artificially lengthen an RPG by making the player level up to a certain amount before advancing. Different difficulty modes are a nice touch, though. If you add them, you can go as crazy as you want with grinding in harder modes. (while making sure it's beatable). Illusiat 6 original only had one difficulty. Later, DJ Omnimaga added an easier mode.

EDIT: A warning if you decide to save memory on enemy formulas by adding an universal level per area, like DJ Omnimaga did in Illusiat 3 through 12 (AKA dynamic enemy stats generation): those are VERY hard to keep balanced. Use at your own risk! Halfway through the game, you may end up having to give the character a magic ring that reduces all magic damage by 80% from now on, like DJ Omnimaga had to do in Illusiat 10 and 12. At that point, no matter how high he was in LV, all magic spells casted by enemies seemed to kill him instantly. Such dynamic enemy stats are good to save space, but the downside is that they're ridiculously hard to balance.

Rule 14: When creating characters and situations, write down your character's personality somewhere. When a character does or says something that goes against what they believe in without any provocation, it detracts from the mood. Nothing is worse that having a selfish thief suddenly give something they took back without a reason. 

Rule 15: Do not make an ultimate weapon if you plan to make the game multiplayer or you plan on adding a secret boss.

Rule 16: When coding, get a piece of paper and write down the letters A-Z on one side. Then, put the symbol <theta> on the other. Now, any permanent values you don't want to be overwritten, assign a variable to them and leave them on that side of the paper. When you are completely sure of those values, erase all unused letters and put them on the other side of the paper. There. Now, the variables on the left are GLOBAL variables. Don't touch those. The ones on the left are LOCAL variables. You can use those for your temporary loops, counters, whatever you need. And, if you lack enough local variables, throw all of your globals into a list and save it. Then, run rampant with your local variables.

NOTE: If you are making a subroutine, make sure none of the variables overwrite any of your values.

Rule 17: When programming in BASIC, don't use Y if you're using the graphscreen. Some graph functions overwrite that value.

Rule 18: Optimize as you go. But, make sure that you can figure out what each line of your program does.

Rule 19: Ask for help if you are struggling. 

(Anything written ABOUT another or another's program automatically gives credit to that person.)

