
Doors CS 7.2

Software Developers’ Kit (SDK)

DOORS CS 7.2 SDK

Kerm Martian and Cemetech

http://dcs.cemetech.net

© 2001-2014 Christopher “Kerm Martian” Mitchell and Cemetech

Doors CS 7 SDK
2 Table of Contents

TABLE OF CONTENTS

Table of Contents... 2

Chapter 1 Introduction .. 9

Introduction to Developing for Doors CS ... 9

Using the Tools in This SDK ... 9

Structure of the SDK .. 9

Chapter 2 Overview of Doors CS BASIC Tools and Features.. 11

Introduction to Doors CS’ BASIC Execution System ... 11

Basic Headers ... 11

“DCS” and “DCS6” Headers... 11

Hybrid DCS-MOS Headers .. 12

Ignore Program Headers ... 12

BASIC Libraries... 13

Chapter 3 BASIC Libraries .. 14

Overview ... 14

XLib Functions ... 14

Celtic III and PicArc Functions .. 15

Using XLib and Celtic Functions ... 15

Accessing Groups and AppVars .. 16

What Not To Do .. 17

Error Catching and Handling ... 17

Doors CS Functions.. 18

BASIC Library Command Reference... 18

DCSB Libs Routines ... 18

Celtic Routines .. 19

PicArc Routines ... 20

XLib Routines .. 20

Omnicalc Routines .. 20

DCSB Lib Routine Details ... 21

StringWidth.. 21

ScanForPx ... 21

HomescreenToGraphscreen .. 22

EnumeratePicVars.. 22

ArcUnarcPic.. 23

DCSLibVersion .. 23

Doors CS 7 SDK
3 Table of Contents

SimpleGUIMouse ... 24

PushGUIStack .. 25

PopGUIStacks .. 28

OpenGUIStack... 28

CloseGUIStack ... 29

RenderGUI .. 29

GUIMouse ... 30

GUIMenu ... 31

PushAnsStack .. 33

PopAnsStack .. 34

ClearAnsStack ... 35

Cn2Send .. 35

Cn2Get ... 36

Cn2Ctrl ... 36

Cn2Status ... 37

Celtic III Library Routine Details... 38

ToggleSet.. 38

NumToString ... 38

GetListElem .. 39

GetArgType .. 39

ChkStats .. 40

LineRead ... 41

LineWrite... 41

LineErase ... 41

LineReplace.. 42

FindProg.. 42

UngroupFile ... 43

GetGroup .. 43

ExtGroup ... 44

GroupMem ... 44

BinRead ... 44

BinWrite... 45

BinDelete .. 45

HexToBin... 45

BinToHex... 46

FastCopy ... 46

ExecHex ... 46

Edit1Byte ... 47

ModeChange... 47

IndexFile.. 48

LookupIndex ... 48

Doors CS 7 SDK
4 Table of Contents

ErrorHandle .. 49

MatToStr ... 49

StringRead .. 50

HexToDec ... 50

DecToHex ... 50

EditWord ... 51

BitOperate .. 51

GetProgList .. 52

PicArc Library Routines... 53

DBQuery1 ... 53

TogglePic .. 54

GetPicGroup .. 54

ExtPicGroup ... 55

StringTile ... 55

PutSprite ... 56

ShiftScreen ... 56

DrawBox .. 57

FillMap ... 57

BoxShift ... 58

DrawText... 59

CopyBox .. 60

XLib Compatibility Library Functions .. 61

ClearScreen .. 61

DrawSprite ... 61

DrawTileMap ... 62

RecallPic .. 63

ScrollScreen ... 64

ChngContrast .. 64

UpdateLCD ... 65

RunIndicator .. 65

GetKey ... 65

CreatePic ... 66

ExecArcPrgm ... 67

GetCalcVer.. 68

DrawShape ... 68

TextMode.. 69

CheckRAM .. 70

Omnicalc Compatibility Routines ... 71

Sprite .. 71

ExecAsm .. 71

Doors CS 7 SDK
5 Table of Contents

Chapter 4 Overview of Doors CS ASM Tools and Features .. 72

Documentation: The Doors CS Wiki... 72

Assembling Suite and Compile.bat/Compile.sh.. 72

Windows Users ... 72

Linux/Mac Users ... 73

Doors CS 7 Include File ... 73

Doors CS Tools for ASM Programmers.. 73

Types of Programs ... 73

Program Headers ... 73

The GUI API .. 75

The Associated Program System .. 76

Other Features .. 76

Chapter 5 The Doors CS GUI API.. 77

Working with the GUI API .. 77

Initializing the GUI ... 77

Adding GUI Elements ... 77

Space-Efficiency: Adding Multiple Elements at Once ... 78

Rendering the GUI ... 78

Accessing Modified Data .. 79

Removing GUI Elements.. 80

Closing the Stack.. 80

Example of a Simple GUI Program ... 80

GUI Memory Areas ... 81

GUI Stack Items ... 82

GUIRNull .. 83

GUIRLargeWin ... 83

GUIRSmallWin ... 84

GUIRFullScreenImg ... 84

GUIRText ... 85

GUIRWinButtons .. 85

GUIRWrappedText ... 85

GUIRButtonText.. 86

GUIRButtonImg .. 86

GUIRTextLineIn ... 86

GUIRRadio... 87

GUIRCheckbox .. 87

GUIRByteInt.. 88

GUIRWordInt ... 88

Doors CS 7 SDK
6 Table of Contents

GUIRHotspot.. 88

GUIRTextMultiline.. 89

GUIRSprite .. 89

GUIRLargeSprite ... 89

GUIRPassIn ... 90

GUIRScrollVert... 90

GUIRScrollHoriz .. 91

GUIRBorder .. 91

GUIRRect ... 92

GUIRCustom .. 92

GUIRMouseCursor ... 92

Chapter 6 Associated Program (AP) System ... 93

AP Routines .. 95

FileOpen.. 95

FileSave ... 95

FileSaveAs... 96

Chapter 7 CALCnet2.2 ... 97

Routines ... 97

Coding Practices .. 98

Memory Areas ... 98

Caveats .. 99

Finding Network Members ... 99

Sending .. 100

Receiving ... 101

More Information ... 101

Chapter 8 Shell Expansions ... 103

Why Write a Shell Expansion? .. 103

Technical Details ... 104

Persistent Storage.. 104

dModes: Return Values From SEs ... 104

Shell Expansion Header ... 105

Chapter 9 Routine Summary .. 106

Ion Compatibility Routines ... 107

iVersion .. 107

iRandom .. 107

iPutSprite .. 108

iLargeSprite.. 108

Doors CS 7 SDK
7 Table of Contents

iFastCopy .. 108

iDetect ... 109

iDecompress .. 109

iGetPixel .. 110

Doors CS Legacy Routines... 111

SmallWindow .. 111

SmallWindowErase.. 111

LargeWindow .. 111

LargeWindowErase ... 111

PlaySound... 111

VDispHL ... 112

Pause .. 112

hDetect .. 113

DispLongInt ... 113

DPutMap ... 113

AP_GUIAVToTop .. 114

RunProg .. 114

Doors CS Graphical User Interface (GUI) Routines .. 116

OpenGUIStack... 116

PushGUIStack .. 116

PushGUIStacks .. 117

GUIFindFirst ... 118

GUIFindNext .. 118

GUIFindThis.. 119

RenderGUI .. 120

GUIMouse ... 120

PopGUIStack .. 121

PopGUIStacks .. 122

CloseGUIStack ... 122

ResetAppPage... 123

CALCnet2,2 Routines ... 124

Cn2_Setup .. 124

Cn2_Setdown.. 124

Cn2_ClearRecBuf ... 124

Cn2_ClearSendBuf .. 125

Doors CS AP Routines ... 126

FileOpen.. 126

FileSave ... 126

FileSaveAs... 127

MirageOS Routines .. 129

Doors CS 7 SDK
8 Table of Contents

Chapter 10 Further Reading.. 131

Appendix A License ... 132

Doors CS 6 End-User License.. 132

A.1| Preamble .. 132

A.2| Availability ... 133

A.3| Scope ... 133

A.4| Usage ... 133

A.5| Liability.. 134

A.6| Updates .. 134

Doors CS 7 SDK
9

Chapter 1
Introduction

CHAPTER 1

INTRODUCTION

Introduction to Developing for Doors CS
Welcome to the Doors CS SDK! This document is meant to be a comprehensive overview of

the available tools and features for writing Doors CS-based TI-BASIC and z80 assembly

language programs. Since this document was written, it is likely that bug fixes, new features,

and additional documentation has been created. Be sure to check http://dcs.cemetech.net

for all of the information in this document and more, as well as the latest beta and final

releases. You can discuss Doors CS, developing for it, and any other questions and comments

on the Cemetech forum at http://www.cemetech.net/forum.

This document discusses the available tools for BASIC programmers, then for ASM

programmers, then visits some of the specific subsystems available for coders, such as the

Graphical User Interface or GUI system, the Associated Program (AP) system, and Shell

Expansions. It concludes with a survey of places to get more information as well as the

developer and end-user licenses.

Using the Tools in This SDK
This SDK, besides being an informative document, is also a full set of tools to help you create

BASIC programs and to build and assemble ASM programs for you. BASIC programmers can

use the HTML/Javascript Header Creator to design a header based on their specific needs,

whether they need MirageOS cross-compatibility, what size icon, and whether they would like

Doors CS to automatically unarchive and rearchive their subprograms.

Assembly programmers have a similar Header Creator, tailored to the needs of coders writing

programmers, Appended Library Extensions (ALEs) or Shell Expansions (SEs), as well as a

batch script to compile files, the TASM and Brass assemblers, and the BinPac8x Python-

language linker for cross-platform compilation.

Structure of the SDK

The file structure of this SDK is as follows:

/SDK/

| asm/ Tools for z80 assembly programmers

+-- +-- exec/ Executable .8xp files end up here

| +-- list/ Generated list files are put here

| +-- source/ All source code should be here

| +-- tasm/ Assemblers, linkers, and include files

| +-- compile.bat Windows compile script

| +-- compile.sh Linux/Mac compile script

Doors CS 7 SDK
10

Chapter 1
Introduction

|

+-- basic/ Tools for TI-BASIC programmers

| +-- HeaderCreator.html Header creator for BASIC programmers

|

+-- DCS7_SDK.pdf This document: SDK in PDF

Doors CS 7 SDK
11

Chapter 2
Overview of Doors CS BASIC Tools and Features

CHAPTER 2

OVERVIEW OF DOORS CS BASIC TOOLS AND FEATURES

Introduction to Doors CS’ BASIC Execution System
Doors CS can execute BASIC programs from one of two major systems: from the Doors CS

desktop, up until Doors CS 6.3 beta the only way to run a program, or from the desktop via

the HomeRun feature that automatically catches any program execution and properly

handles it. From a BASIC standpoint, these two execution methods are indistinguishable, and

all Doors CS features available to BASIC programs via one method will also be available via the

other method. BASIC programs can take advantage of two major categories of Doors CS

features: metadata, such as icons, descriptions, and lists of subprograms to automatically

archive and unarchive, and BASIC library functions, including those from XLib, Celtic III, PicArc,

parts of Omnicalc, and Doors CS’ own powerful DCSB Libs. This chapter will examine the

available metadata and header formats in depth, while Chapter 3 will detail the available

BASIC libraries.

Basic Headers
BASIC headers allow the specification of metadata like descriptions, icons, subprograms, and

hide requests. All of the BASIC headers listed below are specifically designed to not interfere

with normal program operation, so that programs with these headers can be run on any TI-

83/TI-83+/TI-84+-series calculator, even if Doors CS is not loaded on the calculator. Note that

if BASIC libraries are used (see Chapter 3), then this is no longer the case.

“DCS” and “DCS6” Headers

The most commonly-used Doors CS basic headers are the standard DCS and DCS6 headers.

The former allows specification of an 8x8-pixel monochrome icon, with an option to also list

subprograms to be automatically unarchived before this main program is run, and rearchived

when it completes. The latter allows a 16x16-pixel monochrome icon with the same

AutoUnarchive feature option. The correct form of these headers includes a double-quote

character at the beginning of the hex string describing the icon. In Doors CS 5.0 and lower,

this quote was not part of the header, so Doors CS will permanently AutoUpgrade any

program omitting the double-quote to include it.

First, the DCS (8x8 icon) and DCS6 (16x16 icon) headers with no subprograms specified:

::DCS

:"16-char_hex_icon

:Program code

Doors CS 7 SDK
12

Chapter 2
Overview of Doors CS BASIC Tools and Features

Second, the same headers with the addition of the AutoUnarchive header. This requires the

sequence “:A” directly after the header, then one or more lines indicating the 1 to 8 character

name of a valid program, then a single line containing only a colon character: For example,

both headers below describe a program with three subprograms, namely ZSUB1, ZSUB2, and

SUBPRG5.

Hybrid DCS-MOS Headers

For programmers that want MirageOS to still detect their BASIC programs, but don’t want to

lose the icon feature of Doors CS, the Hybrid headers are available. Both forms require the

coder to specify a single 16x16-pixel icon; the first contains no description, while the second

contains a description. Note that both lines of both headers start with an additional colon.

Ignore Program Headers

Most program headers add additional data for shells to display. The Ignore Program headers

both do the opposite: they hide a given program from Doors CS, making it not display that

program on the desktop. These headers are particularly useful for subprograms of main

::"DESCRIPTION

::"64-CHAR 16x16 ICON
:Program code

::

::"64-CHAR 16x16 ICON

:Program code

::DCS6

:"64-char_hex_icon

::A

:ZSUB1

:ZSUB2

:SUBPRG5

::

:Program code

::DCS

:"16-char_hex_icon

::A

:ZSUB1

:ZSUB2

:SUBPRG5

::

:Program code

::DCS6

:"64-char_hex_icon

:Program code

Doors CS 7 SDK
13

Chapter 2
Overview of Doors CS BASIC Tools and Features

programs, especially when coupled with the Archive section of the DCS or DCS6 header

mentioned above in the main program to which the subprograms belong. Both possible

Ignore Program headers are shown below; the upper one is for general programs, while the

bottom one is for programs that use or process Ans.

BASIC Libraries
Doors CS now includes full supporting libraries for all of the most popular so-called Hybrid

BASIC libraries, namely XLib, Celtic III, PicArc, and part of Omnicalc. Use of these libraries

means that your program will not be able to be run on any calculator that does not have at

least Xlib, or Celtic, or Doors CS 7, depending one which library(ies) and routines you choose

to use. On the other hand, though, the libraries afford your program much more power and

control than pure BASIC programs can muster.

:Ans

:Program code

:rand
:Program code

Doors CS 7 SDK
14

Chapter 3
BASIC Libraries

CHAPTER 3

BASIC LIBRARIES

Overview
Doors CS inherits most of its BASIC libraries from the popular Celtic III library package by

Iambian Zenith; much of his code is used with his kind permission, plus additional bug fixes

and optimizations that were added for Doors CS. Celtic III provides functions for its own

libraries as well as emulating PicArc, a library dealing primarily with picture variables, XLib, an

older and more widely-used Hybrid BASIC library, and a few functions from the classic

Omnicalc. Doors CS adds its own set of functions called the DCSB Libs, which provide helpful

functions not included in any of the other libraries in addition to powerful access to the DCS

GUI system, previously available only to ASM programmers.

Users can disabled the Hybrid BASIC libraries from within Doors CS’ options screen, but if they

are left enabled, and the Parser Hook (also known as the HomeRun feature) is enabled, then

the BASIC libraries are available regardless of whether your BASIC program is run from within

Doors CS or from the TI-OS homescreen. This chapter will introduce each of the libraries,

including the arguments and usage of each, as well as mention some notes and caveats for

each library.

XLib Functions
Doors CS has XLib compatibility based on Celtic III, but with many bug fixes, stability

improvements, and speed optimizations. In particular, the shape-drawing code has been

completely overhauled, and many additional features and quirks have been added and

corrected. XLib programs generally use the following sequence to detect whether XLib is

installed, and if Doors CS programs use only XLib functions, they can use this method as well:

If this routine continues through to the program code, it only guarantees that the XLib real()-

based functions are available, not the Celtic III routines, PicArc functions, or DCSB Libs. Most

XLib functions leave Ans unmodified, with the exception of a few that set a value into Ans.

::DCS

:"16-char_hex_icon

:1:real(0

:If not(Ans:Then

:Disp “XLIB IS NOT",

"ONCALC. GET DCS7:",

"DCS.CEMETECH.NET"

:Return:End

:Program code goes here

Doors CS 7 SDK
15

Chapter 3
BASIC Libraries

Celtic III and PicArc Functions
Celtic III is intended to add many additional and powerful functions on top of the XLib

routines, as well as supporting all of the original XLib functionality. All Celtic functions start

with the det() token. As with XLib, Celtic III has its own detection sequence to check whether

Celtic III is installed.

h

If it passes through to the program code section, then you know that at least the real(),

identity(), and det() commands are available, but there is no guarantee that the DCSB Libs are

available. If you want to use the DCSB Libs as well, make sure that you instead use the DCSB

Lib testing sequence in the next section.

Using XLib and Celtic Functions

Celtic III catches certain commands as inputs for the application. The first argument for any of

these caught commands is always the command's function number, which tells the

application what it should do. These commands are the following:

The det(and the identity(tokens will work as they normally do if used as they were originally

intended. Doors CS/Celtic III is smart enough to know whether or not the command is for the

TI-OS or for itself (with the sole exception of finding the determinant of a 1x1 matrix, but who

would do that?). The real(token cannot be used as it was originally intended as per the

precedent set by xLib, and Doors CS uses the real(token to make it completely-compatible

with xLib. The arguments after the function number are inputs for that particular function. If a

real number (ie, not a complex number, and not a string) is specified, it can either be an

immediate value (such as 42) or a letter variable containing the real number (such as K).

Understand that this number MUST be real and not a complex number (such as 3+2i); such a

value will make Doors CS choke in a heartbeat. You can, however, pass negative numbers as

arguments. The result will simply be the two's compliment of said number. Signed math is not

performed.

:det(

:identity(

:real(

::DCS

:"16-char_hex_icon

:If det([[1:Then

:Disp “CELTIC III IS NOT",

"ONCALC. GET DCS7:",

"DCS.CEMETECH.NET"

:Return:End
:Program code goes here

Doors CS 7 SDK
16

Chapter 3
BASIC Libraries

If a string is specified in an argument, it can either be an immediate value (such as "this is a

string") or a string variable (such as Str7). A few functions may make further restrictions, but

they will be clearly explained in the command set listing. Sometimes one of these commands

will NOT output a value. If the command set does not mention an output, do not assume

there will be any.

Examples of commands are as follows (parentheses added for readability):

The command reference later in this chapter define the output of each function. If some sort

of number or string is output, it will be that function's result and can then be used as part of

another function. For example:

Explanation: The two inner det(28...) converts "AAAA" and "5555" from their hex notation into

real numbers. They comprise the first two arguments of det(28...), a command used to

perform a bitwise logic operation on its arguments. The 2 indicates that OR logic is to be

applied; the result of that operation is 65535. The outer det(29...) takes one argument, and is

used to convert a number to a hexadecimal string. The final result is the string "FFFF". That

many nested det(...) commands requires careful checking, but for normal everyday use, it

won't be confusing once you get down to writing your own code.

Accessing Groups and AppVars

Some commands will require a string containing the name of a program file. Most commands

will allow you to substitute the name of a program file for the name of an application variable

(appvar). The main benefit of using appvars is that it doesn't clutter the programs menu, and

they aren't readily accessible by the user. The downside is that applications that use appvars

will EXPECT their own appvars to remain intact.

In order to tell a command that it should be accessing an appvar instead of a program file,

insert the "rowSwap(" token at the beginning of the name. An example is as follows:

Notes: You do not close the parenthesis on the rowSwap(token, as this can cause "File Not

Found" errors at worst or if you're creating a file, an extra token at the end of the file that

renders it inaccessible from any BASIC programs. Also, you can use lowercase letters to refer

to appvars but NOT programs. If you try to name a program using lowercase letters, you'll get

similar results as closing that parenthesis, except much worse.

:det(5,"FOOBAR",1) //Outputs the first line of program FOOBAR

:det(5,"rowSwap(FOOBAR",1) //Outputs the first line of appvar FOOBAR

det(29,det(31,det(28,"AAAA"),det(28,"5555"),2))

: det(0,"FOOBAR",4) //uses TOGGLESET command to delete program FOOBAR
:identity(0,"FOO",0) //Formats program FOO for image database usage.

:real(0,1) //Clears LCD buffer, then updates the display.

Doors CS 7 SDK
17

Chapter 3
BASIC Libraries

A select few commands require that the file specified is a group file. Unfortunately, you are

forced to use the "*row(" token as a prefix to tell Celtic III that it is a group, even though the

command does not take any other type of file. You'll just have to deal with it.

The parenthesis note also applies to this.

What Not To Do

Obviously, don't try to use Celtic III in ways it wasn't intended. You can abuse Doors CS/Celtic

III to perform what you want, but neither I nor Iambian is responsible if Doors CS crashes or

freezes because you tried to input incorrect or illegal arguments.

Error Catching and Handling

If a trappable error has occurred, Celtic III will output a string containing the code of that error

instead of letting the system run its course (either your standard ERR: message, or a system

crash). The following codes describe the error:

Long Code Short Description
.P:IS:FN .1 A variable already exists and Celtic III will not overwrite it
.NULLSTR .2 An input of some kind exists but contains nothing.
.L:NT:FN .3 A line of code or an object was not found during a search.
.S:NT:FN .4 An input string was not found.
.E:2:LNG .5 Entry was too long.
.NULLVAR .6 Some provided variable did not contain any useful content.
.P:NT:FN .7 A program or file you searched for doesn't exist.
.PGM:ARC .8 A program or file you selected is archived; cannot be edited.
.NULLINE .9 The line that was found didn't contain anything.
.STR:ARC .A A string variable that was in use was archived.
.G:NT:FN .B A group that you was looking for wasn't found.
.NT:EN:M .C Not enough memory to complete operation
.NT:A:ST .D Input provided was not a string variable
.NT:REAL .E Input provided was not a real number
.NT:A:GP .F Input was not group file. Forgot the prefix?
.2:M:ARG .G Too many arguments were passed to Celtic III. Check your args.
.I:NT:FN .H Pic file not found.
.D:INVAL .I Database is not compatible with this version.
.E:NT:FN .J Database entry number was not found (too great?)
.INVAL:S .K String used was invalid for some reason.
.INVAL.A .L Arguments used was invalid. Check number of arguments used
.NT:A:LS .M The argument supplied was not a list
.SUPPORT NS Whatever happened means it was not supported by Celtic III.

All that these "errors" indicate is that the normal, documented function of the command you

used could not be run to completion. This may or may not be a good thing, especially if the

: det(13,"*row(FOOBAR",1) //Outputs size of first extractable far from
 //the group FOOBAR

Doors CS 7 SDK
18

Chapter 3
BASIC Libraries

commands are used in a function outside of its documented use, but may otherwise be

perfectly safe. An example might be attempting to read a line out of a file simply to determine

whether or not it even exists.

Doors CS Functions
Doors CS expands upon all of the other BASIC libraries by adding additional functions, such as

commands to manipulate stacks of Ans variables, perform collision detection, work with text

and strings, and create quick, attractive menus. Most importantly, it also provides near-full

access to the Doors CS GUI system, a powerful tool available only to assembly programmers

in previous versions of Doors CS. Like xLib and Celtic, Doors CS libraries have their own

unique detection sequence:

Note that Doors CS uses a similar sequence to Celtic. In fact, det([[42]]) will return 0 if Celtic III

only is installed, 42 if neither Celtic III is installed, and 1337 is Doors CS is installed and

providing DCSBLib, Celtic, PicArc, Omnicalc, and XLib support.

Please carefully read the routine documentation for the non-GUI-related functions. For

information about the GUI stack functions you should refer to the GUI API chapter of this SDK,

which explains opening, pushing, rendering, using the mouse, popping, and closing.

BASIC Library Command Reference

DCSB Libs Routines

• StringWidth - sum(0,"String of token(s)")

• ScanForPx - sum(1,X,Y,direction) dir: 1=up, 2=down, 3=left, 4=right

• HomescreenToGraphscreen - sum(2,ULCD) ULCD: 0=no LCD update, 1=copy to LCD

• EnumeratePicVars - sum(3)

• ArcUnarcPic - sum(4,Pic#,desired) desired: 0=in RAM, 1=in Archive

• DCSLibVersion - sum(5)

• SimpleGUIMouse - sum(6,startX,startY)

• PushGUIStack - sum(7,type,{args...})

• PopGUIStacks - sum(8,numItems)

• OpenGUIStack - sum(9)

• CloseGUIStack - sum(10)

::DCS

:"16-char_hex_icon

:If 1337≠det([[42:Then
:Disp "DOORS CS 7 NOT",

"ONCALC. GET DCS7",

"DCS.CEMETECH.NET

:Return:End

:Program code goes here

Doors CS 7 SDK
19

Chapter 3
BASIC Libraries

• RenderGUI - sum(11[,ULCD])

• GUIMouse - sum(12,startX,startY,dataStrN)

• GUIMenu - sum(13,X,Y,"icon","title","itemlist","labellist")

• PushAnsStack - sum(14[,stackNumber])

• PopAnsStack - sum(15[,stackNumber])

• ClearAnsStack - sum(16[,stackNumber])

Celtic Routines

• ToggleSet - det(0,"FN",f#) 0=Arc;1=Lk;2=PA;3=Hid;4=Del;5=Crt;6=PS;7=Stat

• NumToString - det(1,var) Out:type code

• GetListElem - det(2,"LN",elem) out:lNAME(elem) -> Real/Cpx

• GetArgType - det(3,argofanytype) filetype code

• ChkStats - det(4,f#) 0=RAM 1=ARC 2=ID 3=OSVER

• LineRead - det(5,"FN",line#,[#oflines])

• LineWrite - det(6,"STR","FN",line#)

• LineErase - det(7,"FN",line#,[#oflines])

• LineReplace - det(8,"STR","FN",line#,[#oflines])

• FindProg - det(9,["SEARCH"])

• UngroupFile - det(10,"GFN")

• GetGroup - det(11,"GFN")

• ExtGroup - det(12,"GFN",item#)

• GroupMem - det(13,"GFN",item#)

• BinRead - det(14,"FN",bytestart,#ofbytes)

• BinWrite - det(15,"HEX","FN",bytestart)

• BinDelete - det(16,"FN",bytestart,del#ofbytes)

• HexToBin - det(17,"484558")

• BinToHex - det(18,"BIN")

• FastCopy - det(19)

• ExecHex - det(20,"C9")

• Edit1Byte - det(21,Str?,StartByte,ReplaceWithThisByte)

• ModeChange - det(22...) Not implemented

• IndexFile - det(23,"FILENAME","NEWINDEXNAME")

• LookupIndex - det(24,"FILENAME","INDEXNAME",line#,[#oflines])

• ErrorHandle - det(25,function,string)

• MatToStr - det(26,Matrix#)

• StringRead - det(27,"binstring",start,readThisMany)

• HexToDec - det(28,"HEXSTRING")

• DecToHex - det(29,SomeRealNumber,[autoOverride])

Doors CS 7 SDK
20

Chapter 3
BASIC Libraries

• EditWord - det(30,start_byte,replace_with_this_word)

• BitOperate - det(31,value1,value2,logic)

• GetProgList - det(32,"SEARCHSTRING",[type])

PicArc Routines

• DBQuery1 - identity(0,"DB",f#,args) 0=fm;1=ad;2=dl;3=di;4=ac;5=cb;6=cp

• TogglePic - identity(1,pic#,f#) 0-7=picToBuf;8=newPic;9=TARC;10=del

• GetPicGroup - identity(2,"GFN")

• ExtPicGroup - identity(3,"GFN",pic#)

• StringTile - identity(4,"BSTR",xS,xE,yS,yE,W,xO,yO,pic#S,displogic)

• PutSprite - identity(5,ScrewDocumentingThisCommand)

• ShiftScreen - identity(6,sft#,sftDir,scrnUpdate)

• DrawBox - identity(7,x1,y1,x2,y2,dispmeth)

• FillMap - identity(8,"HEXSTRING",right,down,LOGIC,updateLCD)

• BoxShift - identity(9,x,y,w,h,shiftType,shiftRepeat,updateLCD)

• DrawText - identity(10,flag,[x,y],"TEXT")

• CopyBox - identity(xx,x1s,y1s,x2s,y2s,x1d,y1d,x2d,y2d,dispmeth)

XLib Routines

• ClearScreen - real(0,ULCD)

• DrawSprite - real(1,x,y,w,h,p#,pX,pY,logic,flp,ULCD)

• DrawTileMap - real(2,MTRX#,xO,yO,W,H,xS,xE,yS,yE,p#,LOGIC,tSiz,ULCD)

• RecallPic - real(3,p#,LOGIC,ULCD)

• ScrollScreen - real(4,scrDir,scrStep,ULCD)

• ChngConstrast - real(5,f#,val). 0=SetContrast;1=ReturnCurrentContrast

• UpdateLCD - real(6)

• RunIndicator - real(7,value) 0=off;1=on

• GetKey - real(8) Returns keycode

• CreatePIC - real(9,f#,p#,[1=64 rows]) 0=stoPic;1=DelPic

• ExecArcPrgm - real(10,f#,tPrg#) Pass Ans="FN"

• GetCalcVer - real(11) Returns calcver. 0=83+;1=SE;2=84+;3=SE

• DrawShape - real(12,shapeType,x1,y1,x2,y2,ULCD)

• TextMode - real(13,f#,[chr]) 0=inv;1=un;2=lwrcse;3=un;4=outputchar

• CheckRAM - real(14) Returns amount of free RAM.

Omnicalc Routines

• sprite - real(20,pic#,picX,picY,w,h,x,y,[logic])

• ExecAsm - real(33,"HEXSTRING")

Doors CS 7 SDK
21

Chapter 3
BASIC Libraries

DCSB Lib Routine Details

StringWidth

http://dcs.cemetech.net/index.php?title=BasicLibs:StringWidth

Description

This routine will find the width in pixels of any TI-BASIC screen, if it is written on the

graphscreen in small variable-width font. For example, it would return 1 for a single space, 14

for the "cos(" token, and 18 for "Hello". Since it does not actually draw the string, it accepts

arbitrarily-long strings, including those wider than 96 pixels.

Example Usage

PROGRAM:SUM0TEST

:Input "STRING:",Str1

:Disp "WIDTH:",sum(0,Str1

Technical Details

Arguments

sum(0,"STRING"

Outputs

The width in pixels of "STRING" is returned in Ans from this routine, and can be used as Ans or

stored in a variable.

Destroyed

Ans

ScanForPx

http://dcs.cemetech.net/index.php?title=BasicLibs:ScanForPx

Description

This routine scans the graphscreen in a given direction from a given starting point, and

returns the coordinate of the last pixel it encounters that is the same color as the starting

pixel. For example, if the starting pixel is black, and 2 (down) is specified as the direction, the

routine will move down one pixel at a time from the starting pixel until it finds a white pixel,

then return the y-coordinate of the pixel above that pixel. If the pixel directly below the

starting pixel was the first white pixel, it would return the coordinates of the starting pixel. If

the edge of the screen is reached, the coordinate of the edge pixel will be returned (0 for up

or left, 95 for right, 63 for down). This routine is useful for things like flood filling and collision

detection.

Technical Details

Doors CS 7 SDK
22

Chapter 3
BASIC Libraries

Arguments

sum(1,X,Y,DIR

X: x-coordinate of starting pixel

Y: y-coordinate of starting pixel

DIR: Direction to scan. 1=up, 2=down, 3=left, 4=right, all others invalid

Outputs

The coordinate of the last pixel of the same color as the starting pixel in the given direction is

returned in Ans. If the chosen direction is up or down, the coordinate is a y-coordinate (the x

will be the same as the initial x). If the direction is left or right, Ans will contain an x-

coordinate.

Destroyed

Ans

HomescreenToGraphscreen

http://dcs.cemetech.net/index.php?title=BasicLibs:HomescreenToGraphscreen

Description

Simply copy the homescreen to the graphscreen. Because of the limited metadata that the TI-

OS stores about homescreen characters, this can only apply formatting like text inversion to

the entire screen or none of it. This routine can optionally update the LCD with the contents

of the graph screen.

Technical Details

Arguments

sum(2,ULCD

ULCD: 1 to update the LCD with the new graph screen contents, 0 to leave it as-is

Outputs

Graph buffer updated.

Destroyed

None

EnumeratePicVars

http://dcs.cemetech.net/index.php?title=BasicLibs:EnumeratePicVars

Description

Enumerate all picture variables present on the calculator, between Pic 1 and Pic 255 (Pic 0 is

indicated as #10). This function returns a list containing numbers, each pertaining to a picture

variable present. A negative number indicates that the particular picture is archived. If this

function returns a one-element list containing the number 0, then no pictures are present.

Doors CS 7 SDK
23

Chapter 3
BASIC Libraries

Technical Details

Arguments

sum(3

Outputs

A list is returned in Ans containing as many elements as there are Pic variables present. The

numerical value of each element indicates the presence of one Pic variable; a negative

element indicates an archived Pic. Note that the list returned is NOT sorted. The case of no

Pics present causes the list {0} to be returned.

Destroyed

Ans

ArcUnarcPic

http://dcs.cemetech.net/index.php?title=BasicLibs:ArcUnarcPic

Description

This routine will archive or unarchive a specified Pic variable. If the picture is already in the

desired state, nothing happens. If the picture does not exist, nothing happens. This works

with Pic 1 through Pic 255.

Technical Details

Arguments

sum(4,PIC,DESIRED

PIC: The number of the Pic variable to use. 3=Pic 3, 60=Pic 60, 10=Pic 0, for example

DESIRED: 0 if it should be put into (or left in) RAM, 1 if it should be put into (or left in) the

Archive.

Outputs

The Picture is archived, left in RAM, or left undisturbed, depending on where it started and

what the desired final state was. Ans is not modified.

Destroyed

None

DCSLibVersion

http://dcs.cemetech.net/index.php?title=BasicLibs:DCSLibVersion

Description

This routine simple returns an integer indicating which version of the Doors CS libraries are

present. Note: this routine cannot be used to verify whether Doors CS libraries or present or

not. For that, det([[42 must be used; the beginning of this chapter for details.

Doors CS 7 SDK
24

Chapter 3
BASIC Libraries

Technical Details

Arguments

sum(5

Outputs

An integer is returned in Ans indicating the version of the DCSB Libs present. Known versions:

1: Supplies sum(0) through sum(12), as present in Doors CS 6.7 beta.

2: Supplies sum(0) through sum(13), as present in Doors CS 6.8 beta.

3: Supplies sum(0) through sum(16), as present in Doors CS 6.9 beta.

Destroyed

Ans

SimpleGUIMouse

http://dcs.cemetech.net/index.php?title=BasicLibs:SimpleGUIMouse

Description

This routine will invoke a simplified version of the Doors CS GUI Mouse. It runs until a click is

registered, and will return regardless of where the click is. It does not take into account the

contents of the screen or GUI stack, if any. It will properly preserve the graphscreen, and

return with it in the same state as when it started.

Sample Usage

PROGRAM:SUM6TEST

:{45,32,1

:While 2≠Ans(3
:sum(6,Ans(1),Ans(2

:Text(1,1,"YOU CLICKED AT (",Ans(1),",",Ans(2),") [",Ans(3),"]

:End

Technical Details

Arguments

sum(6,X,Y

X: The x-coordinate at which to start the mouse. Valid values are 0 through 95, inclusive.

Y: The y-coordinate at which to start the mouse. Valid values are 0 through 63, inclusive.

Outputs

This routine returns a 3-element list in the form {X,Y,CLICK}. X and Y are the final x-coordinate

and y-coordinate of the mouse when a click was registered. The CLICK element of the list is 1

if the click was a left-click (2nd, TRACE, or ENTER) or a right-click (ALPHA or GRAPH).

Destroyed

Ans

Doors CS 7 SDK
25

Chapter 3
BASIC Libraries

PushGUIStack

http://dcs.cemetech.net/index.php?title=BasicLibs:PushGUIStack

Description

This routine pushes one element onto the GUI stack; it is among the most complex of the

DCSB Libs. Read carefully the documentation for each function, as invalid or improper

arguments may cause unpredictable behavior up to freezes and RAM clears. Please see the

GUI API guide for assembly programmers for full information on how the GUI stack works.

You can also check out the ASM equivalents of the DCSB Lib GUI stack routines at the GUI

Tools page. The ASM equivalent of this function is PushGUIStack.

Technical Details

Arguments

sum(7,TYPE,[ARGS...]

TYPE: The type of element to push onto the GUI stack. There are 24 total valid types, as

detailed below. Each is linked to the ASM SDK page on that type.

• GUIRnull: sum(7,0,N). This is one of the three types that must be the first element pushed.

The value of N should be 255 if the graphscreen should be completely erased before

rendering the elements on top of this, or 254 if the contents of the graphscreen should be

preserved.

• GUIRLargeWin: sum(7,1,ICON,TITLE). This is one of the three types that must be the first

element pushed. ICON must be a 10-character hex string defining five bytes containing a

5x5 icon. The TITLE string may contain any typeable characters and tokens.

• GUIRSmallWin: sum(7,2,X,Y,ICON,TITLE). This is one of the three types that must be the

first element pushed. X and Y are the coordinates of the top-left corner of the small

window, and must be between 0 and 15, inclusive. An X or Y value greater than 15 may

cause memory corruption and crashes. ICON must be a 10-character hex string defining

five bytes containing a 5x5 icon. The TITLE string may contain any typeable characters and

tokens.

• GUIRFullScreenImg: sum(7,3,PIC#). This will insert a fullscreen image into the GUI stack,

and is usually used directly after sum(7,0,255), creation of a new GUI stack group headed

by a GUIRnull. The value of Pic# specifies the Pic variable from which the image should be

copied. The Pic must be in RAM, and as with all Pic functions, 10=Pic 0.

• GUIRText: sum(7,4,X,Y,0,"STRING"). The specified string will be displayed in the GUI stack,

where X,Y is the top-left corner of the text. The 0 specifies what font to use; as of Doors CS

7.0, only one font is available, but future versions of Doors CS may add additional fonts.

The STRING should not overflow the right edge of the container or the screen.

• GUIRWinButtons: sum(7,5,N). Display one or more of the possible window buttons at the

top of this container. This should only be used if a GUIRSmallWin or GUIRLargeWin is the

Doors CS 7 SDK
26

Chapter 3
BASIC Libraries

head element of this GUI stack group. N is a sum of the possible values 32 (for the close or

X button), 64 (for the maximize or square button), and 128 (for the minimize or underbar

button). For example, to render the close and minimize buttons, N should equal 32+128 =

160.

• GUIRWrappedText: sum(7,6,X,Y,WIDTH,0,STRING). Draws a block of text starting at (X,Y),

of width WIDTH, automatically wrapped as necessary. The WIDTH should not be wider

than the container, nor should it cause any part of the text to be rendered below the

bottom of the screen. The 0 indicates what font to use; as of Doors CS 7.0, only font 0 is

available. Do not confuse this with the GUIRTextMultiline element.

• GUIRButtonText: sum(7,7,X,Y,"STRING"). Renders a clickable button at (X,Y) containing

string STRING. If the button is clicked, a GUI Mouse call will be terminated.

• GUIRButtonImg: sum(7,8,X,Y,IMWIDTH,BUTTONIMG,ICON). Renders a clickable button at

(X,Y) containing the image specified by the hex code in ICON. The IMWIDTH may be 1 for 8

pixels, 2, for 16 pixels, etc. The BUTTONIMG specifies the width of the image in pixels, for

example 5, 6, or 8 if IMWIDTH=1. The ICON is a string of hex nibbles 10*IMWIDTH

characters long.

• GUIRTextLineIn: sum(7,9,X,Y,WIDTH,MAXCHARS,STRING). Renders an interactive single-

line text box WIDTH pixels wide. Up to MAXCHARS characters may be typed inside. The

initial contents of the text box will be STRING, or blank if STRING is "".

• GUIRRadio: sum(7,10,X,Y,GROUPID,STATE,STRING). Renders a radio button at (X,Y),

including a descriptive STRING to the right of the button. The STATE argument can be 0 or

1, indicating whether the button should be initially unselected or selected, respectively.

The GROUPID indicates which radio buttons are in the same group; when one radio

button with a given GROUPID is clicked, all other radio buttons with the same GROUPID

are unselected.

• GUIRCheckbox: sum(7,11,X,Y,GROUPID,STATE,STRING). Renders a checkbox at (X,Y),

including a descriptive STRING to the right of the box. The STATE argument can be 0 or 1,

indicating whether the box should be initially unchecked or checked, respectively. The

GROUPID indicates which check boxes are in the same group, but has no effect currently.

It is included mainly for symmetry with GUIRRadio elements.

• GUIRByteInt: sum(7,12,X,Y,INITIAL,MIN,MAX). A numerical input box, accepting a number

between 0 and 255, inclusive. The MIN and MAX arguments specify some subset of that

range as valid for this box. The INITIAL argument specifies what number it should start at

when rendered.

• GUIRWordInt: sum(7,13,X,Y,INITIAL,MIN,MAX). A numerical input box, similar to

GUIRByteInt but accepting a number between 0 and 65535, inclusive. The MIN and MAX

arguments specify some subset of that range as valid for this box. The INITIAL argument

specifies what number it should start at when rendered.

Doors CS 7 SDK
27

Chapter 3
BASIC Libraries

• GUIRHotspot: sum(7,14,X,Y,WIDTH,HEIGHT). An invisible clickable hotspot with upper-left

corner at (X,Y) and a given WIDTH and HEIGHT. It masks any elements underneath, so a

GUIRHotspot can be used to provide custom clickability on top of other elements.

• GUIRTextMultiline: sum(7,15,X,Y,ROWS,WIDTH,STRING). An interactive multiline textbox

with ROWS rows (ie, 6*ROWS pixels tall) and WIDTH pixels wide. The initial contents of the

textbox is STRING; line returns can be represented with the Stat Plots symbol "dot". An

empty initial STRING "" is also acceptable.

• GUIRSprite: sum(7,16,X,Y,HEIGHT,SPRITE). An 8-pixel wide, HEIGHT-pixel-high sprite.

SPRITE is a 2*HEIGHT-character string of hex nibbles. (X,Y) is the upper-left corner of the

sprite.

• GUIRLargeSprite: sum(7,17,X,Y,BYTEWIDTH,PXHEIGHT,SPRITE). An 8*BYTEWIDTH-pixel-

wide, PXHEIGHT-pixel-high sprite. X should be less than 97-8*BYTEWIDTH, and Y should

be less than 65-PXHEIGHT. SPRITE should be a string of hex nibbles,

2*PXHEIGHT*BYTEWIDTH characters long.

• GUIRPassIn: sum(7,18,X,Y,WIDTH,MAXCHARS,STRING). Renders an interactive single-line

password input box WIDTH pixels wide. Up to MAXCHARS characters may be typed inside.

The initial contents of the text box will be STRING, or blank if STRING is "". The functionality

of this element is identical to that of GUIRTextLineIn except that the characters are

obfuscated.

• GUIRScrollVert: sum(7,19,X,Y,HEIGHT,ID,INC/DEC,MIN,MAX,CUR). Render a vertical

scrollbar starting at upper-left at (X,Y), with scroll area height HEIGHT (total vertical height

12+HEIGHT). The MIN, MAX, and CUR values define the size of the scroll slider and its

current position. The ID is arbitrary, but should be unique for future use. INC/DEC is also

irrelevant in the context of the DCSBLibs, and should be left as 1.

• GUIRScrollHoriz: sum(7,20,X,Y,WIDTH,ID,INC/DEC,MIN,MAX,CUR). Render a horizontal

scrollbar starting at upper-left at (X,Y), with scroll area width WIDTH (total horizontal width

12+WIDTH). The MIN, MAX, and CUR values define the size of the scroll slider and its

current position. The ID is arbitrary, but should be unique for future use. INC/DEC is also

irrelevant in the context of the DCSBLibs, and should be left as 1.

• GUIRBorder: sum(7,21,X,Y,WIDTH,HEIGHT,COLOR). Render an outlined, unfilled rectangle

with upper-left corner (X,Y), width WIDTH, and height HEIGHT. COLOR is 0=white, 1=black.

• GUIRRect: sum(7,22,X,Y,WIDTH,HEIGHT,COLOR). Render a filled rectangle with upper-left

corner (X,Y), width WIDTH, and height HEIGHT. COLOR is 0=white, 1=black, 2=invert.

• Note the absence of a sum(7,23,…) function. GUIRCustom is not a valid DCSB Libs item.

• GUIRMouseCursor: sum(7,24,X1*256+Y1,X2*256+Y2,MASK,CURSOR). (X1,Y1) is the top-

left corner of the area; (X2,Y2) is the bottom-right corner. Note that the coordinates are

LCD-based, not based on the coordinates of the current window. The MASK is a 16-

character string of hex nibbles specifying an 8x8 white-on-black mask, where black is

transparent and white is opaque. The CURSOR is a similar 16-character string of hex

Doors CS 7 SDK
28

Chapter 3
BASIC Libraries

nibbles specifying an 8x8 sprite. Inside the specified area, the mouse cursor will be

changed from the default to the specified cursor.

Outputs

The GUI stack is modified to include the new element, and enlarged to hold it. Note that

memory contraints apply; it is recommended that the programmer be cautious and verify

there is enough available memory before large pushes to the stack.

Destroyed

None

PopGUIStacks

http://dcs.cemetech.net/index.php?title=BasicLibs:PopGUIStacks

Description

This routine pops one or more elements off of the GUI stack, as pushed by sum(7,...). Be very

careful not to pop more elements than you have pushed, as this may cause unpredictable

behavior up to freezes and RAM clears! You may pop off two elements and then push one

element, for example, but make sure the total number of elements does not fall below 0 at

any time. If you want to remove all elements on the GUI stack, you may instead use

CloseGUIStack, or sum(10). Please see the GUI API guide for assembly programmers for full

information on how the GUI stack works. You can also check out the ASM equivalents of the

DCSB Lib GUI stack routines at the GUI Tools page. The ASM equivalent of this function is

PopGUIStacks.

Technical Details

Arguments

sum(8,ELEMENTS

ELEMENTS: The number of elements to pop off of the GUI stack.

Outputs

None

Destroyed

None

OpenGUIStack

http://dcs.cemetech.net/index.php?title=BasicLibs:OpenGUIStack

Description

This routine opens the GUI stack for use by your BASIC program. Please see the GUI API guide

for assembly programmers for full information on how the GUI stack works. You can also

check out the ASM equivalents of the DCSB Lib GUI stack routines at the GUI Tools page. The

Doors CS 7 SDK
29

Chapter 3
BASIC Libraries

ASM equivalent of this function is OpenGUIStack. Please note that if you PushGUIStack

without calling OpenGUIStack first, Doors CS will automatically open the GUI stack.

Note: It is vital that your program be polite and close the GUI stack via sum(10),

CloseGUIStack, before Return'ing or Stop'ing!

Technical Details

Arguments

sum(9

Outputs

None

Destroyed

None

CloseGUIStack

http://dcs.cemetech.net/index.php?title=BasicLibs:CloseGUIStack

Description

This routine closes the GUI stack, removing all elements in it and freeing the memory used by

the GUI stack Appvar. If you call this function without first having called OpenGUIStack or

PushGUIStack, it does nothing. Please see the GUI API guide for assembly programmers for

full information on how the GUI stack works. You can also check out the ASM equivalents of

the DCSB Lib GUI stack routines at the GUI Tools page. The ASM equivalent of this function is

CloseGUIStack.

Technical Details

Arguments

sum(10

Outputs

None

Destroyed

None

RenderGUI

http://dcs.cemetech.net/index.php?title=BasicLibs:RenderGUI

Description

This routine renders the contents of the GUI stack, but then returns control to the calling

BASIC program rather than invoking the GUIMouse. This routine is useful if you wish to render

Doors CS 7 SDK
30

Chapter 3
BASIC Libraries

an interface via the DCS GUI stack system, but either don't wish to use the mouse, or wish to

use the SimpleGUIMouse instead of the full GUI mouse. Please see the GUI API chapter for

assembly programmers for full information on how the GUI stack works. You can also check

out the ASM equivalents of the DCSB Lib GUI stack routines in the same chapter. The ASM

equivalent of this function is RenderGUI.

Technical Details

Arguments

sum(11[,ULCD]

If the function is called as sum(11), the GUI is rendered to the graph buffer and copied to the

LCD. Sum(11,1) will also achieve the same thing. However, sum(11,0) will render the GUI to

the graph buffer but not copy it to the LCD.

Outputs

None

Destroyed

None

GUIMouse

http://dcs.cemetech.net/index.php?title=BasicLibs:GUIMouse

Description

This routine both renders the current GUI stack, and invokes the GUI mouse; it is not

necessary to call sum(11), RenderGUI, before this function. Please see the GUI API guide for

assembly programmers for full information on how the GUI stack works. You can also check

out the ASM equivalents of the DCSB Lib GUI stack routines at the GUI Tools page. The ASM

equivalent of this function is ASMLibs:GUIMouse.

To avoid possible situations where a BASIC programmer calls sum(12) without any way of

escaping out of the call, like a GUIRButton or GUIRWinButtons, [STO>] acts as a panic buttons,

and will return with the special outputs Ans(3)=0 and Ans(4)={number of interactive hotspots

in stack}. If you determine what was clicked by checking Ans(4), you can either handle this as

a special case or ignore it and re-loop, giving you a short time to press [ON] and trigger an

ERR:BREAK. Savvy programmers may even find a way to use this as a feature.

Notes: Do not call this function without at least two elements on the GUI stack, namely a GUI

master (specifically, a GUIRnull, a GUIRSmallWin, or a GUIRLargeWin), and a hotspot, button,

or GUIRWinButtons that will allow control to return to the BASIC program. If you call this

function without anything clickable in the GUI stack, then there will be no way to break out of

the mouse other than [STO>]. The [ON] key turns off the calculator when the GUI mouse is

Doors CS 7 SDK
31

Chapter 3
BASIC Libraries

active. The calculator will also APD if the GUI mouse is active and idle for two to three

minutes.

Technical Details

Arguments

sum(12,X,Y,N

X: Initial x-coordinate of mouse.

Y: Initial y-coordinate of mouse.

N: String in which to store interactive element contents. 4=Str 4, 8=Str 8, 10=Str 0, for

example.

Outputs

This routine has two output variables:

• Ans: A four-element list is returned in Ans containing {X,Y,CLICK,TRIGGER}. The X and Y

values are the final x- and y-coordinates of the mouse when a click occurred. The CLICK

element is 1 if a left click was registered, or 2 for a right click. The value of TRIGGER

indicates which hotspot in the GUI stack was clicked; its meaning is very dependent on

the contents you have pushed into the GUI stack. If you pushed a GUIRWinButtons

containing only an X and a GUIRButtonText, for instance, clicking the X will return

TRIGGER=0, and clicking the text button will return TRIGGER=1. Scrollbars have two

hotspots, so clicking the left or up arrow will return a distinct trigger from clicking the

right or down arrow. You may also wish to correlate the values of {X,Y} and TRIGGER for

more fine-grained detection. Generally, trial-and-error is the best (and most intuitive) way

to figure out what TRIGGER values correspond to what GUI element for a particular GUI

stack configuration.

• Str N: The contents of most interactive GUI elements are returned concatenated into a

single string, Str N, where the value of N is specified as one of the arguments to this

function. Elements are separated with the Stat Plots "+" symbol (different from the

addition symbol). Line returns in string elements are represented by the Stat Plots "dot"

symbol. This string will always contain the same number of Stat Plots "plus" symbols as it

does elements, preceeding each element by its "plus" symbol. The inString() and sub()

functions, combined when necessary with the expr() command, can be used to extract all

the individual string and numbers from this string.

Destroyed

Ans, StrN (see above)

GUIMenu

http://dcs.cemetech.net/index.php?title=BasicLibs:GUIMenu

Doors CS 7 SDK
32

Chapter 3
BASIC Libraries

Description

This routine offers a very simple way to invoke a fully-GUIfied alternative to the TI-BASIC

Menu(command. The user can specify an icon, window location, title, and list of items and

labels. Just like Menu(, the sum(13) command will Goto a specific label corresponding to the

item selected, or return an error if no such label can be found. An alternate mode has been

added in which if the LABELLIST is omitted, then the index of the chosen menu item will

instead be returned in Ans.

Sample Usage

:sum(13,8,8,"TEST","F8888888F8","Item 1┼ITEM
TWO┼tan(*tan(4┼log(²X+][┼²../┼Six itemth one┼HOW ABOUT
NOW?prgm┼ln(End┼Scrolling!┼More and more┼EVEN MORE AsmPrgm┼","AAABACAD
E EABACAD EAB

:Lbl AA:ClrHome

:Pause "1

:Return

:Lbl AB:ClrHome

:Pause "2

:Return

:Lbl AC:ClrHome

:Pause "3

:Return

:Lbl AD:ClrHome

:Pause "4

:Return

:Lbl E:ClrHome

:Pause "5

:Return

Technical Details

Please note that the weird + symbol is the STATS Plus, not the normal plus key.

Arguments

sum(13,X,Y,TITLE,ICON,ITEMLIST,LABELLIST

X: X-coordinate of top-left corner of small window

Y: Y-coordinate of top-left corner of small window

ICON: 10-character hex string defining a 5x5 icon

TITLE: A string to be used as the window title

Doors CS 7 SDK
33

Chapter 3
BASIC Libraries

ITEMLIST: A list of items to be in the menu. Each menu item should conclude with the Stats

Plots "+" symbol (in [2nd][Y=][>][>][2]), so the ITEMLIST string should contain as many Stats

Plots "+" symbols as items.

LABELLIST: A string of 2*(number of items) characters. Two-character labels, like AA or Q2 or

PA, are represented verbatim. One-character labels such as A or U are represented as a two

character string, where the first character is a space, such as " A" or " U". Take a look at label E

in the sample below for another example. If this argument is omitted completely, then no

Goto'ing will be attempted; instead, Doors CS will simply return the index of the chosen menu

item.

Outputs

If the LABELLIST is specified, this routine will not modify Ans, but will Goto to the label

corresponding to the chosen menu item. If the LABELLIST is instead omitted, Ans will indicate

which item was chosen.

Destroyed

Contents of LCD/graph buffer

PushAnsStack

http://dcs.cemetech.net/index.php?title=BasicLibs:PushAnsStack

Description

This routine pushes the current value of Ans into a special Ans stack. The PopAnsStack

command is the reverse function, popping a value back into Ans. It is recommended that you

call ClearAnsStack before touching the AnsStack in case another programmer failed to clean it

up properly.

If no second argument is provided, then the value in Ans is pushed to the default stack, called

Ans0. However, a second argument between 0 and 9 inclusive will instead specify that the

value should be pushed to one of Ans0 through Ans9. PopAnsStack allows a similar second

argument.

Technical Details

Arguments

sum(14[,stackNumber]

Outputs

The value of Ans is pushed to the AnsStack if and only if there is enough memory, and the

value in Ans is one of the following types:

• Real Number

• Complex Number

• Real List

Doors CS 7 SDK
34

Chapter 3
BASIC Libraries

• Complex List

• String

• Real Matrix

If there is insufficient error, an ERR:MEM will be thrown. If the value in Ans is not one of the

acceptable types, no item is pushed to the stack, but execution continues.

Destroyed

None

PopAnsStack

http://dcs.cemetech.net/index.php?title=BasicLibs:PopAnsStack

Description

This routine pops the current value of Ans from a special Ans stack. The PushAnsStack

command is the reverse function, pushing a value into Ans. It is recommended that you call

ClearAnsStack before touching the AnsStack in case another programmer failed to clean it up

properly.

If no second argument is provided, then the value in Ans is popped from the default stack,

called Ans0. However, a second argument between 0 and 9 inclusive will instead specify that

the value should be popped from one of Ans0 through Ans9. PushAnsStack allows a similar

second argument.

Technical Details

Arguments

sum(15,[stackNumber]

Outputs

The value of Ans is popped from the AnsStack if and only if there is enough memory, and the

value in Ans is one of the following types:

• Real Number

• Complex Number

• Real List

• Complex List

• String

• Real Matrix

If the AnsStack is empty, Ans is left untouched.

Destroyed

Ans

Doors CS 7 SDK
35

Chapter 3
BASIC Libraries

ClearAnsStack

http://dcs.cemetech.net/index.php?title=BasicLibs:ClearAnsStack

Description

This routine clears the special Doors CS AnsStack. The PushAnsStack and PopAnsStack

functions are used to add and remove items from the AnsStack. If no second argument is

specified, then all AnsStacks, Ans0 through Ans9, are cleared and deleted. Specify sum(16,0)

to clear the default AnsStack, Ans0. Specify another value to clear and delete that AnsStack.

Valid values are 0-9.

Technical Details

Arguments

sum(16,[stackNumber]

Outputs

AnsStack cleared and deleted, if it existed.

Destroyed

None

Cn2Send

http://dcs.cemetech.net/index.php?title=BasicLibs:Cn2Send

Description

Takes a string or list and puts them into the CALCnet buffer to be sent to the recipient in θ.

Technical Details

Arguments

sum(17,MESSAGE

The recipient is stored in theta. If theta has a value of 0 a broadcast frame is sent instead. A

message can be a string (252 bytes or less) or a list (28 entries or less). Note that some

characters are 2 bytes, for example lowercase letters.

Outputs

Packet is prepared to be sent out over the CALCnet network. An integer is returned in Ans:

1: Packet was sent successfully.

0: The previous frame has not been processed yet.

Destroyed

Ans

Doors CS 7 SDK
36

Chapter 3
BASIC Libraries

Cn2Get

http://dcs.cemetech.net/index.php?title=BasicLibs:Cn2Get

Description

Takes a string or list and puts them into the CALCnet buffer to be sent to the recipient in θ.

Technical Details

Arguments

sum(18

The recipient is stored in theta. If theta has a value of 0 a broadcast frame is sent instead. A

message can be a string (252 bytes or less) or a list (28 entries or less).

Outputs

Retrieves the pending packet, if any, from the CALCnet buffer, and clears it. If the packet

contains a list, it is loaded into LCN2 (a list automatically created by Cn2Get when it finds a

pending packet ready for processing). If the packet contains a string, it is loaded into Str9. An

integer is returned in Ans:

1: There was no frame to retrieve.

0: A frame was successfully retrieved.

Destroyed

Ans

Cn2Ctrl

http://dcs.cemetech.net/index.php?title=BasicLibs:Cn2Ctrl

Description

Enables or disables the CALCnet interface based on the value passed. WARNING: If you utilize

any of the BASIC Calcnet 2.2 interface commands (Cn2Ctrl, Cn2Get, Cn2Send, Cn2Status)

make sure to destroy the interface at the end of your program. FAILURE TO DO SO WILL

RESULT IN YOUR CALCULATOR'S LINKING CAPABILITIES BREAKING. To fix this, you will need to

perform a RAM clear.

Technical Details

Arguments

sum(19, BOOLEAN

0: Shuts down the network connection

1: Sets up the network connection

Outputs

Sets up or destroys the CALCnet interface. These routines cannot fail.

Doors CS 7 SDK
37

Chapter 3
BASIC Libraries

Destroyed

None

Cn2Status

http://dcs.cemetech.net/index.php?title=BasicLibs:Cn2Status

Description

Returns the current state of the send or get FlagBytes.

Technical Details

Arguments

sum(20, BOOLEAN

0: Send byte.

1: Receive byte.

Outputs

Returns the Current state of the send or get FlagBytes in Ans. This routine cannot fail.

Destroyed

Ans

Doors CS 7 SDK
38

Chapter 3
BASIC Libraries

Celtic III Library Routine Details

ToggleSet

http://dcs.cemetech.net/index.php?title=BasicLibs:ToggleSet

Description

Performs an action with a file given the function_number provided. If function_number is...

• 0 = Archive/unarchive a file. The output will be zero if it has been unarchived. Some other

number if archived.

• 1 = Lock/unlock a file. The output is 0 if unlocked, 1 if it is locked, 2 if you attempted this

on an appvar.

• 2 = Program to appvar and vice versa. A "1" will be output if the operation was a success.

• 3 = Hide/unhide a file. Outputs 0 if the file is visible, 1 if it is now hidden.

• 4 = Delete. Just. Deletes a file. Not undoable. Be careful on how you use this.

• 5 = Create. Creates a zero-sized file with the name you choose. There so you can insert

your own stuff in it.

• 6 = Prog to string. Outputs the entire program file into a string so you can paste it into

some other file.

• 7 = Output stats. Somewhat complicated. It outputs three letters followed by five digits

indicating its size. Those three letters will tell you a lot about the file:

o 1st letter: A= archived, R= in RAM

o 2nd letter: H= hidden, V= visible

o 3rd letter: W= writable, L= locked (uneditable)

Naturally, archived files are uneditable. To get just the size of the file, do this:

expr(sub(det(0,"FILENAME",7),4,5))

If you omit the function number, the command defaults to the archive/unarchive function.

Useful for saving bytes.

Technical Details

Arguments

det(0,"FILENAME",[function_number])

Outputs

(See Description

NumToString

http://dcs.cemetech.net/index.php?title=BasicLibs:NumToString

Doors CS 7 SDK
39

Chapter 3
BASIC Libraries

Description

Converts any variable of the real type to a string. This includes real vars, real lists, and

matrices. Useful if you want to store variables into program files, perhaps as a high score or

just data storage for later use. Note that storing numbers this way takes up a whole lot less

space unless your numbers are sporting many decimals.

If your input is a list and it is in quotes, you'll also be able to read that list even if it's from

archive. For rules about inputting a list, see the GetListElem command (det(2)).

Technical Details

Arguments

det(1,variable_of_any_real_type)

Outputs

(See description)

GetListElem

http://dcs.cemetech.net/index.php?title=BasicLibs:GetListElem

Description

Gets an element from a list. If you could use the standard TI-OS function on it, you should, but

this command is very useful if the list is ARCHIVED. Otherwise, it works just like your standard

L1(n) command. If you omit the list element, or set it to zero, this function will return the

dimensions of the list.

RULES: If the name is predefined (L1 through L6), just put that in quotes. If it is a user-defined

list, you must prefix the name with that little "L". This is done automatically if you paste the

name of the list from the list variable list.

Technical Details

Arguments

det(2,"LISTNAME",[get_this_element])

Outputs

Specified element of the specified list

GetArgType

http://dcs.cemetech.net/index.php?title=BasicLibs:GetArgType

Description

Outputs a real # depicting the type of variable that was input. A table follows of the possible

non-erroneous input that can be made. Useful for determining whether or not an output to a

Doors CS 7 SDK
40

Chapter 3
BASIC Libraries

Celtic III command was a number or an error. To prevent this from altering the Ans variable,

use this command within if() statements and the like.

• Real = 0

• List = 1

• Matrix = 2

• Equation = 3

• String = 4

• Complex = 12

• Cpx List = 13

Technical Details

Arguments

det(3,argument_of_any_type)

Outputs

Real number indicating type of argument (see description).

ChkStats

http://dcs.cemetech.net/index.php?title=BasicLibs:ChkStats

Description

This is a multi-purpose command used to read some of the system's status. Just provide a

function, and an output will result.

Technical Details

Arguments

det(4,function)

Possible functions:

• 0 = Outputs value of free RAM

• 1 = Outputs value of free ROM (Archive)

• 2 = Hex string output of first ten digits of calc serial (still not quite enough to identify each

calc)

• 3 = Get calc's OS version (string, such as "1.13") (note that the period will be bugged. It still

works)

Outputs

A number or string.

Doors CS 7 SDK
41

Chapter 3
BASIC Libraries

LineRead

http://dcs.cemetech.net/index.php?title=BasicLibs:LineRead

Description

Reads a file (BASIC program) starting at the specified line and, if included, reads that many

more lines. If a number of lines is included, it adds that many more to the output. For

example, if you wanted to read from the first line and grab one more line after that from the

file "FOO", you'd have the following:

det(5,"FOO",1,1)

If you just want to find how many lines there are in the file, just try to read the 0th line. It'll

output a real number containing the number of lines in the file.

Technical Details

Arguments

det(5,"FILENAME",read_this_line,[by_this_many_more_lines])

Outputs

(See description)

LineWrite

http://dcs.cemetech.net/index.php?title=BasicLibs:LineWrite

Description

Writes the contents of a string to a file starting at the specified line. A newline character is

appended to the end of the string you want to write, so you do not need to include it.

Technical Details

Arguments

det(6,"FILENAME","STRINGTOWRITE",start_at_this_line)

Outputs

(See description)

LineErase

http://dcs.cemetech.net/index.php?title=BasicLibs:LineErase

Description

Deletes a line from a file starting at the specified line and if specified, deletes that many more

lines from the file. This is NOT an undoable operation, so be careful.

Technical Details

Doors CS 7 SDK
42

Chapter 3
BASIC Libraries

Arguments

det(7,"FILENAME",delete_this_line,[and_these_many_more])

Outputs

Deletes lines from a specified file.

LineReplace

http://dcs.cemetech.net/index.php?title=BasicLibs:LineReplace

Description

Replaces the specified line at start with the contents of your string. If you specified a continue,

it would truncate that many more lines. For example, if you wanted to replace 4 lines with just

the word "BAR" from the second line from the file "FOO":

det(8,"BAR","FOO",2,3)

Technical Details

Arguments

det(8,"STRING","FILENAME",line_number,[number_of_lines])

Outputs

Replaces line(s) in specified file

FindProg

http://dcs.cemetech.net/index.php?title=BasicLibs:FindProg

Description

The search phrase is NOT part of the filename. It is, instead, the leading characters in the file

you want to search for. The output will be a space-delimited (separated by spaces) string

containing the names of the files that match the search phrase. For example, say you had a

few programs that start with ":CCN". You would get all files that would match that if you did:

det(9,":CCN")

If you wanted to get a complete program/appvar file listing then you'd just omit the search

phrase. You will get some oddly-named program files as the first of the results, since they are

system-reserved program files with illegal file names.

A neat little example with this command is locating all ION-type files. For that, you'd use an

additional command inline with this one.

det(9,det(17,"BB6DC930"))

That command uses the HEXTOBIN command to convert the hex to the binary that ASM

programs (w/ION Head) are stored in.

Doors CS 7 SDK
43

Chapter 3
BASIC Libraries

Note: This command is not to be confused with GETPROGLIST, which outputs a string

consisting of files whose NAMES start with the specified characters.

Technical Details

Arguments

det(9,["SEARCHPHRASE"])

Outputs

Finds specified file(s). See description.

UngroupFile

http://dcs.cemetech.net/index.php?title=BasicLibs:UngroupFile

Description

Fully ungroups files using an experimental routine designed to overcome the OS version @ | >

1.13 limit. Buggy, but should still work for program-type-only group files.

Default behavior is to skip any pre-existing files, but if [option] is set to 1, the behavior

changes to overwrite. Careful when you do this because overwritten files are gone. Forever if

in RAM and in archive if a garbage-collect was done over after the file went missing.

Technical Details

Arguments

det(10,"GROUPFILENAME",[option])

Outputs

Ungroups the specified file, if it exists.

GetGroup

http://dcs.cemetech.net/index.php?title=BasicLibs:GetGroup

Description

This generates a space-delimited string containing all the file names of programs and appvars

that are found in the group in the order that they are found. The order is important, as it lends

itself well to the ExtGroup command.

Technical Details

Arguments

det(11,"GROUPFILENAME")

Outputs

String specifying the contents of the given group file.

Doors CS 7 SDK
44

Chapter 3
BASIC Libraries

ExtGroup

http://dcs.cemetech.net/index.php?title=BasicLibs:ExtGroup

Description

Extracts the nth item from a group in the order it was found from the previous command.

Outputs a real "1" if this command was successful.

Technical Details

Arguments

det(12,"GROUPFILENAME",extract_this_item)

Outputs

Ans = 1 if the command succeeded, otherwise it was unsuccessful (for example, specified an

item larger than the number of items in the group) Extracts one specified file out of a group.

GroupMem

http://dcs.cemetech.net/index.php?title=BasicLibs:GroupMem

Description

Instead of extracting the nth item from a group, this determines how much data is in the file.

Add some reasonable number, like 13, and you have the amount of memory this file would

take up in RAM if you were to extract this. Great for group extraction managers.

Technical Details

Arguments

det(13,"GROUPFILENAME",get_size_of_this_item)

Outputs

Ans = the amount of memory consumed by the data portion of the specified file in the

specified group.

BinRead

http://dcs.cemetech.net/index.php?title=BasicLibs:BinRead

Description

Reads a file starting at a specified byte and continues reading for the specified number of

bytes. The output will be a hex string representing those bytes. The zeroth byte is the start of

the file. Additional note: The starting point will accept a negative number but it'll only work

correctly if the file is in RAM.

Technical Details

Doors CS 7 SDK
45

Chapter 3
BASIC Libraries

Arguments

det(14,"FILENAME",start_at_this_byte,read_this_many_bytes)

Outputs

Reads a given number of bytes from a specified program or file.

BinWrite

http://dcs.cemetech.net/index.php?title=BasicLibs:BinWrite

Description

Converts the hex string into bytes and then inserts that data into a file starting at the specified

byte. The zeroth byte is the start of the file.

Technical Details

Arguments

det(15,"FILENAME","HEXSTRING",start_at_this_byte)

Outputs

Modifies the specified file

BinDelete

http://dcs.cemetech.net/index.php?title=BasicLibs:BinDelete

Description

Deletes a number of bytes from a file starting at the specified location. The zeroth byte is the

start of the file.

Technical Details

Arguments

det(16,"FILENAME",start_here,delete_this_many_bytes)

Outputs

Deletes bytes from a file at a location.

HexToBin

http://dcs.cemetech.net/index.php?title=BasicLibs:HexToBin

Description

Outputs the binary equivalent of an input string. For example, if you did this:

det(17,"41424344")

The result would be: "ABCD", since each of those hex digits equate to the tokens 'A','B','C', and

'D' in that order. Very useful if you want to provide input that would other wise be impossible

Doors CS 7 SDK
46

Chapter 3
BASIC Libraries

from BASIC, such as the start of an ION shell header for the FINDPROG command, or supplying

binary-only input for some of the few commands that require it.

This command replaces the TOKENCODE command, since using HEXTOBIN is more

convenient due to the fact that most token equates are in hexadecimal, not decimal. You can

also grab as many tokens as you want through this.

Technical Details

Arguments

det(17,"HEXSTRING")

Outputs

Converts hex code to binary.

BinToHex

http://dcs.cemetech.net/index.php?title=BasicLibs:BinToHex

Description

Just the opposite of the HEXTOBIN command. This converts a binary string back to

hexadecimal. Useful for making sense of some ASM code/data files.

Technical Details

Arguments

det(18,"BINSTRING")

Outputs

Converts a binary string into a string of hex characters.

FastCopy

http://dcs.cemetech.net/index.php?title=BasicLibs:ToggleSet

Description

It calls the IFastCopy routine to update the LCD with the graph buffer.

Technical Details

Arguments

det(19)

Outputs

Copies the graph buffer to the LCD. Ans is unmodified.

ExecHex

http://dcs.cemetech.net/index.php?title=BasicLibs:ExecHex

Doors CS 7 SDK
47

Chapter 3
BASIC Libraries

Description

It converts up to 767 bytes into code (1534 hex characters) and executes it from the

savesscreen buffer, useful for implementing simple stuff that was missed by a library as large

as Celtic III/DCS7. Although it automatically appends a C9 (RET) instruction at the end of the

string, you can still seriously screw up your calculator if used with erroneous ASM code.

Technical Details

Arguments

det(20,"HEXSTRING")

Outputs

Executes a given string of hex as binary.

Edit1Byte

http://dcs.cemetech.net/index.php?title=BasicLibs:Edit1Byte

Description

Replaces a byte in some string variable, Str1 to Str0, using a decimal number 0 thru 255 in

replace_with_this_byte within that string at this specified offset (at_this_byte), all of which

start at zero. You will get an error if you try to overwrite something past the end of this string.

Since the specified string is edited directly, there will be no output and thus keep Ans intact,

except if an error occurred. This means you cannot put in an immediate string as nothing but

a discarded temporary variable will have been changed. Useful for quiety editing a string.

Technical Details

Arguments

det(21,StringVar,at_this_byte,replace_with_this_byte)

Outputs

Replace a byte in a string.

ModeChange

http://dcs.cemetech.net/index.php?title=BasicLibs:ModeChange

Description

Allows one to read or change stuff in Celtic III's hidden appvar. Used for settings or reading

status of delayed functions. The offset starts at 0.

If function= ...

• 0: Reads data at offset.

• 1: Writes [newvalue] to the offset. Old value is read out

Doors CS 7 SDK
48

Chapter 3
BASIC Libraries

More information about which offset does what will be explained later. Try not to pass bogus

values into this command, as you CAN cause improper application function if used

incorrectly.

Technical Details

Arguments

det(22,function,offset,[newvalue])

Outputs

Change Celtic modes.

IndexFile

http://dcs.cemetech.net/index.php?title=BasicLibs:IndexFile

Description

Creates an index of a program file and stores it as another program file as indicated by

INDEXNAME. This is for use with the following command, LookupIndex

Any pre-existing files will be overwritten automatically, as if to update the index, so please

take care that an important file is not specifed. If the new index cannot be fit in memory after

the old one is deleted, a new one is not created. Unfortunately, you will have lost the old

index. Keep a tight rein on memory.

Technical Details

Arguments

det(23,"FILENAME","INDEXNAME")

Outputs

The index is created from FILENAME and stored in INDEXNAME, if enough memory exists.

LookupIndex

http://dcs.cemetech.net/index.php?title=BasicLibs:LookupIndex

Description

Uses the index file specified for quicker and much more consistent lookup of lines in a file.

Very useful for large data files that would take a while to scan through using the normal

lookup method.

The major drawback is that once a file is indexed, the file cannot be changed unless re-

indexed by command 23. A good feature is that for purely read-only purposes, BOTH the

program and index files can be archived.

Technical Details

Doors CS 7 SDK
49

Chapter 3
BASIC Libraries

Arguments

det(24,"FILENAME","INDEXNAME",this_line,[by_this_many])

Outputs

See Description

ErrorHandle

http://dcs.cemetech.net/index.php?title=BasicLibs:ErrorHandle

Description

Executes BASIC code with an error handler installed. That means if the code you execute can

do anything it wants including divide by zero. The execution will end but an obvious system

error will not trigger. Instead, this function will return with a value that indicates the error

condition.

If function = 0, the indicated string contains the name of the program to execute with these

special parameters. If function = 1, the string contains the program code itself. Just don't do

anything complicated in it. Do not recurse and certainly try not to call this command inside

any program or subroutines you've already called this command in. If you attempt to do so,

the original calling routine will be lost.

Technical Details

Arguments

det(25,function,Str?) ****NOT FULLY IMPLEMENTED****

Outputs

Executes BASIC code safely.

MatToStr

http://dcs.cemetech.net/index.php?title=BasicLibs:MatToStr

Description

Outputs a hex string based on the input matrix, for use with PicArc's STRINGTILE command.

Any entry in a matrix over 255 will be treated as matrix_element modulo 256; for example,

511=1023=255.

Technical Details

Arguments

det(26,Matrix#)

Outputs

Hex string based on input matrix.

Doors CS 7 SDK
50

Chapter 3
BASIC Libraries

StringRead

http://dcs.cemetech.net/index.php?title=BasicLibs:StringRead

Description

Works almost identically to BASIC's sub() command, except that the output will be in

hexadecimal and two-byte tokens will read as two instead of one byte. It is particularly useful

for extracting data from a string that may contain nonsensical data that simply needs to be

manipulated. If you allow the start point to be zero, the size of the string in bytes is taken. For

data manipulation, you should use the Edit1Byte command.

Technical Details

Arguments

det(27,"binstring",start,readthismany)

Outputs

Substring is returned.

HexToDec

http://dcs.cemetech.net/index.php?title=BasicLibs:HexToDec

Description

Converts up to 4 hex digits back to decimal. Useful for the previous command. If you pass a

string longer than 4 digits, only the first four are read.

Technical Details

Arguments

det(28,"HEXSTRING")

Outputs

Returns integer converted from hex string.

DecToHex

http://dcs.cemetech.net/index.php?title=BasicLibs:DecToHex

Description

Converts a number between 0 and 65,536 to its hexadecimal equivalent. The number of

hexadecimal output to the string will have its leading zeroes stripped so inputting 15 will

result in "F" and 16 will result in "10". Set autooverride to 1 to output all leading zeroes, which

may be useful for routines that require four hex digits at all times but cannot spend the

memory/time whipping up a BASIC solution to fill the missing zeroes.

Technical Details

Doors CS 7 SDK
51

Chapter 3
BASIC Libraries

Arguments

det(29,SomeRealNumber,[autooverride])

Outputs

Returns up to four digits of hexadecimal in a string.

EditWord

http://dcs.cemetech.net/index.php?title=BasicLibs:EditWord

Description

Note: A "word" in this sense is two bytes. Useful for editing a binary string which entries are all

two bytes in length, such as a special string tilemap. You're required, however, to specify

offset in bytes. Also know that all words are stored little-endian. That means that the least

significant byte is stored before the most significant byte is.

This command, otherwise, works just like EDIT1BYTE. Its documentation is rewritten here for

convenience. Replaces a word in some string variable, Str1 to Str0, with a replacement value 0

thru 65535 starting at some specified byte (start is at 0). The string supplied is edited directly

so there's no output, per se. See EDIT1BYTE for more details.

The replacement is written in little-endian form and if the number is between 0 and 255, the

second byte is written in as a zero.

Technical Details

Arguments

det(30,Str?,starting_byte,replace_with_this_word)

Outputs

String is modified. However, there is no explicit return value.

BitOperate

http://dcs.cemetech.net/index.php?title=BasicLibs:BitOperate

Description

Performs a bitwise operation between value1 and value2 using a supplied logic value. Logic:

NONE=0 AND=1 ; OR=2 ; XOR=3. These numbers are converted to a 16-bit number and then

the operation is carried out in order to maintain simplicity.

If the numbers are out of bounds, then the function will exit out with an error. If a negative

number is introduced, it will be treated as 65536-abs(value). This command really helps mask

out hex digits but if you use strings to store those digits, you'll need to use the HEXTODEC

command for each value you need. This can easily be done inline, as the example shows:

det(31,det(28,"AAAA"),det(28,"5555"),2)

Doors CS 7 SDK
52

Chapter 3
BASIC Libraries

That example should turn out to be 65535, or "FFFF" if you were to extend the idea of

functions:

det(29,det(31,det(28,"AAAA"),det(28,"5555"),2))

Technical Details

Arguments

det(31,value1,value2,logic)

Outputs

Returns a number based on bitwise math on the inputs.

GetProgList

http://dcs.cemetech.net/index.php?title=BasicLibs:GetProgList

Description

This function will return a space-delimited string consisting of the names of

programs/appvars that match partial name of the SEARCHSTRING. Which is to say:

det(32,"TEMP")

would return all program names that start with the characters "TEMP", which may be

something like "TEMP001 " or "TEMP001 TEMP002 TEMP003 ", etc. If SearchType = 1, appvars

will be searched for; if SearchType = 2, groups will be searched for. This function will not look

for lists. This is easy enough to do using other BASIC commands and Celtic III commands.

NOTE: This command is NOT to be confused with FINDPROG, which outputs a string

consisting of files whose CONTENTS starts with the specified string. Also use the fact that the

final name in the list is terminated with a space to make extracting names from the list easier.

Unlike all the other commands, this one will not find hidden variables. You'll have to manually

use the starting character that the file was hidden by. Celtic III gives you all the tools needed

to do this but you'll need to read the CIII tutorial to find out how to do this.

Technical Details

Arguments

det(32,"SERACHSTRING",SearchType)

Outputs

Get filtered list of programs on the calculator.

Doors CS 7 SDK
53

Chapter 3
BASIC Libraries

PicArc Library Routines

DBQuery1

http://dcs.cemetech.net/index.php?title=BasicLibs:DBQuery1

Description

A nifty little function that allows many kinds of operations to take place with the PicArc

database. The db_argument will vary depending on what you are going to do, but not by that

much. Just read below.

If function=

0: Format this database. Just like anything that says "FORMAT", you lose all preexisting data if

that file happens to already exist. This is not an undoable action, so take care. If the file does

not already exist, it is created and then formatted. After you use this command, you will be

able to work around with the file as a PicArc database. No arguments needed

1: Append a picture file. db_arg1 will be the pic number you want to refer to. For Pic1,

argument will be 1, for Pic9, it'll be 9. For Pic0, it'll be 10. Keep in mind that this command only

appends Pic files. No insertion is available, so be careful on the order of Pic files you append.

2: Delete an entry. Starting at db_arg1 = 0, this command removes the specified entry off of

the database. This command is NOT undoable, so exercise extreme caution.

3: Retrieves the number of entries in the database.

4: Works just like function 1, except that this command will attempt to compress the pic. It

automatically chooses the method of best compression so you'll always get the smallest entry

that the application is capable of making, but using this command may be a little slower than

its counterpart. All the other commands transparently decompresses compressed entries

without much of a speed loss.

5: Copies the entry denoted by db_arg1 to the graph buffer with the logic indicated by

db_arg2. 0: REPLACE, no screen update. 1: AND, no screen update. 2: OR, no screen update. 3:

XOR, no screen update. 4: REPLACE, the screen is updated. 5: AND, the screen is updated. 6:

OR, the screen is updated. 7: XOR, the screen is updated.

6: Copies an entry from the database as denoted by db_arg1 (starting at zero) to a Pic file as

denoted by db_arg2. For example. to copy entry 6 of the database "FOO" to Pic1, do the

following: identity(1,"FOO",6,6,1)

Technical Details

Arguments

identity(0,"DATABASENAME",function,db_arg1,db_arg2)

Doors CS 7 SDK
54

Chapter 3
BASIC Libraries

Outputs

Query database

TogglePic

http://dcs.cemetech.net/index.php?title=BasicLibs:TogglePic

Description

This command takes Pic X (Pic0 = 10) and performs an action designated by a function

number. If arg_1 = ...

0: Copies Pic file to the graph buffer using logic method. arg_1 specifies the Pic file arg_2

specifies the logic code. The supported codes are:

 0: REPLACE, no screen update.
 1: AND, no screen update.
 2: OR, no screen update.
 3: XOR, no screen update.
 4: REPLACE, the screen is updated.
 5: AND, the screen is updated.
 6: OR, the screen is updated.
 7: XOR, the screen is updated.

1: Creates a new pic file using the contents of the graph buffer. Any preexisting picture will be

replaced.

2: Swaps a pic file between archive and RAM. If it is now in RAM, the output is 0, else it is some

other number.

3: Deletes a picture. This is not an undoable action, so be cautious while using this function.

Technical Details

Arguments

identity(1,pic_number,function,[arg_1,arg_2...])

Outputs

Modifies the LCD contents. See above

GetPicGroup

http://dcs.cemetech.net/index.php?title=BasicLibs:ToggleSet

Description

Outputs a list containing all the names of the pic files in the specified TI-OS group file. Each

name is denoted by a number, so 1 denotes Pic1, 0 denotes Pic10, and 68 denotes Pic68.

Technical Details

Doors CS 7 SDK
55

Chapter 3
BASIC Libraries

Arguments

identity(2,"GROUPFILENAME")

Outputs

List of the Pics in a group file.

ExtPicGroup

http://dcs.cemetech.net/index.php?title=BasicLibs:ExtPicGroup

Description

Copies a pic by name from the group and puts it into a pic file of its corresponding number.

Any preexisting pic files are overwritten.

Technical Details

Arguments

identity(3,"GROUPFILENAME",pic_name_in_group)

Outputs

Copy a Pic from a group into RAM. It is not possible to copy to a Pic name other than the one

specified for that Pic inside the group.

StringTile

http://dcs.cemetech.net/index.php?title=BasicLibs:StringTile

Description

See xLIB command DrawTileMap for information regarding the inputs. The only difference is

that "Matrix_name" is replaced with "BINARYSTRING". For this, you supply a hex string

converted to binary with the HexToBin command. The Height and Width property of the

command is used to provide a two-dimensional matrix feel to an inherently one-dimensional

structure that is a string.

If 2ByteMode is set to something other than 0, then the input string is considered words

instead of bytes. This allows the user to use 4 hex digits (two bytes) per tile so up to 65536

different tiles can be accessed using this command. All other arguments function as they do

with the xLIB command.

As a developer, you should develop your tilemaps in hex and then use the HexToBin

command to convert it to the format required by this command. To edit this tilemap, you

should use the Edit1Byte command while this tilemap is in its binary format. Note that any

missing arguments will default to the value of zero (0) instead of 32 as in xLIB.

Technical Details

Doors CS 7 SDK
56

Chapter 3
BASIC Libraries

Arguments

identity(4,"BINSTR",xPos,yPos,Width,Height,StartX,EndX,SStartY,SEndY,Pic#,Logic,TileSize,Upd

ate_LCD,2ByteMode)

Outputs

Draws the specified tilemap to the graph buffer.

PutSprite

http://dcs.cemetech.net/index.php?title=BasicLibs:PutSprite

Description

This command works just like the xLIB command real(1,...) (DrawSprite) except that the Pic

and the coordinates on that Pic file are not defined. Instead, a string consisting of hex digits is

used to define the sprite as inline data. For example, if you wanted to draw a black 8*8 block

at the top-left corner of the screen with XOR logic and drawn immediately:

identity(5,"FFFFFFFFFFFFFFFF",0,0,1,8,3,0,1)

This is useful for those that want to display sprites without the use of bulky image files. For

large sprites, each byte goes LEFT first, then DOWN, so specifying

"80FF0180000180000180FF01" would be rendered as a perfect box 3 bytes wide and 4 pixels

tall.

Note that any missing arguments will default to the value of zero (0) instead of 32 as in xLIB.

Technical Details

Arguments

identity(5,"HEXSTRING",x,y,w,h,logic,flip,update_lcd)

Outputs

Draws the sprite to the LCD buffer, optionally also updating the LCD.

ShiftScreen

http://dcs.cemetech.net/index.php?title=BasicLibs:ShiftScreen

Description

Shifts the image on the graphbuffer a number of times in a direction indicated below:

 left : 1

 right : 2

 up : 4

 up-left : 5

 up-right : 6

 down : 8

Doors CS 7 SDK
57

Chapter 3
BASIC Libraries

 down-left : 9

 down-right : 10

Note that any area that does not have new contents shifted onto it, for example the last row

of the LCD if the image is shifted up, will be left with its existing contents. If screen_update is

zero, the screen will not update. Otherwise, it will update.

Technical Details

Arguments

identity(6,shift_number_of_times,direction,screen_update)

Outputs

Shifts the screen in one of eight possible directions.

DrawBox

http://dcs.cemetech.net/index.php?title=BasicLibs:DrawBox

Description

Draws a box which corners are (x_left,Y_top) and (x_right,y_bottom) using a specified display

method. Since this display method code is not complete, let's say that it is xLIB-compatible

with the drawshape command, minus three. Add 128 to this number and the screen will also

be updated. In addition, the code to support this command in Doors CS is a complete

replacement of Celtic's code for the same, and should fix almost all the bugs with this

command present in Celtic.

Technical Details

Arguments

identity(7,x_left,y_top,x_right,y_bottom,display_method)

Outputs

Draw a rectangle to the graph buffer, and optionally also the LCD

FillMap

http://dcs.cemetech.net/index.php?title=BasicLibs:FillMap

Description

A command that fills the screen with the same 8 x 8 tiles as defined by 16 hex digits. Along

with the right and down shift arguments, this command makes scrolling backgrounds far

easier. The hexstring, as said before, is 16 digits long, 8 pairs which makes up an 8 by 8 pixel

tile. The right and down arguments determine how many pixels the filled map should be

shifted. You can either choose not to shift or shift in either direction up to 8 pixels. Since the

routine does mod 8, you can actually have these numbers increment and decrement

Doors CS 7 SDK
58

Chapter 3
BASIC Libraries

bounded by -65565 to 65535 so you should not actually have to test for bounds save for

those already mentioned.

LOGIC applies a method used to write the tiles to the buffer. 0=overwrite ; 1=AND ; 2=OR ;

3=XOR. If UpdateLCD is anything other than zero, the screen is updated with whatever was

just written to the buffer.

Technical Details

The bounds are actually -99999 and 99999 and it'll still function properly due to how the

custom float to integer routine works. This "bug" is not likely to be fixed. It's not hurting

anything. It's safe. No one is going to wait at a menu for as long as it takes to cycle through

the routine *that* many times.

Arguments

identity(8,"HEXSTRING",Right,Down,LOGIC,UpdateLCD)

Outputs

Fills the screen with the given tiles.

BoxShift

http://dcs.cemetech.net/index.php?title=BasicLibs:BoxShift

Description

Note: this command is incompletely implemented

This command shifts or rotates within a box-shaped area on the screen (and may be the

whole screen if you want). If you don't update the LCD, this command is very useful for

dynamically editing tilemaps by loading them to the buffer, using this command to edit

them, then storing them back to the pic file, all without the buffer ever being updated. The

procedure is fast enough to be dismissed as a slight slowdown due to the BASIC parser.

Technical Details

This routine does not perform clipping. All coordinates and dimensions must remain

onscreen.

Arguments

identity(9,x,y,w,h,Dir,Type,Repeat,LCD_update)

x: top-left corner x, 0 thru 11. (each 8 pixels is a byte)

y: top-left corner y, 0 thru 63.

w: width of box object, 1 thru 12. Specifies byte widths.

h: height of box object, 1 thru 64

Dir: Each will have a basic direction followed by what you must add to it in order to perform a

different type of shift.

Doors CS 7 SDK
59

Chapter 3
BASIC Libraries

 left = 1

 right = 2

 up = 4

 up-left = 5

 up-right = 6

 down = 8

 down-left = 9

 down-right = 10

Type: Determines what type of shifting is to take place:

 0 = Keep bit being shifted in

 1 = Shift in a black bit (for black backgrounds)

 2 = Shift in a white bit (for white backgrounds)

 3 = Let bit that shifts out reappear on other side (for scrolling backgrounds)

Repeat: A number that repeats the shift operation as many times as specified. Cannot be

zero.

LCD_update: If it is a number other than zero, the screen is updated with the results.

Outputs

Modifies the graph buffer and optionally the LCD.

DrawText

http://dcs.cemetech.net/index.php?title=BasicLibs:DrawText

Description

Draws text to the graph screen with the coordinates x,y using the small font. The screen is

NOT updated. If you wanted to update it, you should've used the Text() command instead. If

you omit the x,y coords, the text is drawn to the last coordinate the previous DRAWTEXT

command ended up. Does not line-wrap. It's your duty to do that yourself. If you don't want

the text to be modified in any way, set flag to zero. If you want to modify, you should do

addition to the value using these numbers:

+1 = Draw using large font.

+2 = Erase 1 row of pixels below the small font base

+4 = Invert text

+8 = Hex string is used in place of text to use font map. If you know the character's hex value,

you can use it. Advantage: Get chars you can't access any other way.

+16 = Update screen anyway. Just a throwback.

Example: I want to use the large font AND invert text at x=4 and y=8 using "THIS IS TEXT" as

text.

Doors CS 7 SDK
60

Chapter 3
BASIC Libraries

identity(10,0+1+4,4,8,"THIS IS TEXT")

- or -
identity(10,5,4,8,"THIS IS TEXT")

Note that flag sums have been collapsed for simplicity

Technical Details

Arguments

identity(10,flag,[x,y],"TEXT")

Outputs

Put text into the graph buffer.

CopyBox

http://dcs.cemetech.net/index.php?title=BasicLibs:CopyBox

Description

Not yet implemented

Not implemented yet. Hope to implement it soon, as it will be one of the more useful

functions in the Celtic III PicArc extension code.

Technical Details

Arguments

identity(11,…)

Outputs

Copy a section of the screen, to be completed in a future version.

Doors CS 7 SDK
61

Chapter 3
BASIC Libraries

XLib Compatibility Library Functions

ClearScreen

http://dcs.cemetech.net/index.php?title=BasicLibs:ClearScreen

Description

Clears off the graph buffer. Also used to check whether or not XLib is installed.

Technical Details

Arguments

real(0,update_lcd)

Update_lcd:

 0: Do not update

 1: Update the cleared screen

Outputs

See Description

DrawSprite

http://dcs.cemetech.net/index.php?title=BasicLibs:DrawSprite

Description

Draws a sprite to the buffer at a specified location. The sprite is taken from a Pic file. This will

work even if the Pic file is archived.

Technical Details

Arguments

real(1, Spr_X, Spr_Y, Spr_Width, Spr_Height, sPIC_Num,sPIC_X, sPIC_Y, Spr_Method, Spr_Flip,

Spr_UpdateLCD

Spr_X: Upper-right of sprite to be displayed, onscreen, between 0 and 95

Spr_Y: Upper-right of sprite to be displayed, between 0 and 63

Spr_Width: Sprite width in bytes. An 8-pixel-wide sprite is 1 bye wide , 16 pixels wide is 2

bytes, and so on.

Spr_Height: Sprite height in pixels

sPIC_Num: The picture number that this sprite is stored in. 1-9 for Pic1-Pic9, 0 for Pic10.

sPIC_X: The offset for the stored sprite in the pic horizontally. Must be a value from 0-11, and

is aligned on bytes (with every 8 pixels).

sPIC_Y: The offset for the sprite in the pic vertically. Does not need to be aligned.

Spr_Method:

 0: overwrite

 1: AND logic

Doors CS 7 SDK
62

Chapter 3
BASIC Libraries

 2: OR logic

 3: XOR logic.

Spr_Flip:

 0: No flip

 1: Horizontal Flip

Spr_UpdateLCD:

 0: Do not update

 1: Update the cleared screen

Outputs

See Description

DrawTileMap

http://dcs.cemetech.net/index.php?title=BasicLibs:DrawTileMap

Description

Draws a tile map to the screen based off of the given matrix and picture. This routine supports

up to 65535 tiles, each starting from the Pic number you specified and following to each

numerically adjacent Pic # for each overflow. Let's say your starting Pic# is 5 and you want to

access tile 4324. There are 96 tiles per pic on 8x8 mode, so tile 4324 will be on pic 50. Pic data

will be read from archive if need be. It'll be slower, though. An additional feature added into

the sprite routine is the ability to invert the sprite prior to displaying. To do this, add 4 to

whatever you use for LOGIC. For example, to invert a sprite and use XOR display logic, use 7

since 3 + 4 = 7.

Technical Details

Arguments

real(2,Matrix_number,x_offset,y_offset,Width,Height,SStartX,SEndX,SStartY,SEndY,Pic#,Logic,

TileSize,Update_LCD)

Matrix_number: Number of matrix with map data. 0=[A], 9=[J]

x_offset: x-offset for the part of map you want to draw.

y_offset: y-offset for the part of map you want to draw.

Width: width of the tilemap

Height: height of the tilemap

SStartX: column to start drawing. 0-12 (8x8) or 0-6 (16x16)

SEndX: column to end drawing. 0-12 (8x8) or 0-6 (16x16)

SStartY: row to start drawing. 0-12 (8x8) or 0-6 (16x16)

SEndY: row to end drawing. 0-12 (8x8) or 0-6 (16x16)

Pic#: Pic file to start looking for tiles from.

Logic:

 0: Overwrite logic

Doors CS 7 SDK
63

Chapter 3
BASIC Libraries

 1: And logic

 2: Or logic

 3: Xor logic

tile_size: set to 16 for 16x16 tiles. Otherwise, it's 8x8.

Update_LCD: Does not update the screen if 0, otherwise it does.

The SStartX, SEndX, SStartY, and SEndY allow you to draw a "windowed" map so you can fit

things on the side, like a HUD or something. Drawing will also be accelerated for smaller

maps. For example, if you wanted to draw an 8x8 tilesized map with a 1 tile blank border on

all sides:

SStartX: 1

SEndX: 11

SStartY: 1

SEndY: 7

Outputs

See Description

RecallPic

http://dcs.cemetech.net/index.php?title=BasicLibs:RecallPic

Description

Recalls a Pic into the graph buffer. This will work even if the Pic is archived

Technical Details

Arguments

real(3, rPIC_Num, rPIC_Method, Recall_UpdateLCD[, Full_Size])

rPIC_Num: The pic to recall. Pics from 0-255 are valid, instead of the usual Pic0-Pic9

rPIC_Method:

 0: Overwrite

 1: AND logic

 2: OR logic

 3: XOR Logic

Update_lcd:

 0: Do not update

 1: Update the cleared screen

Full-Size: If this is 1, then the created image is 64 rows high. If this argument is 0 or omitted,

then the created image is the BASIC-standard 63 rows high.

Outputs

See Description

Doors CS 7 SDK
64

Chapter 3
BASIC Libraries

ScrollScreen

http://dcs.cemetech.net/index.php?title=BasicLibs:ScrollScreen

Description

Scrolls the screen in any of 8 directions

Technical Details

Arguments

real(4, scroll_direction, scroll_step, update_LCD

scroll_direction:

 0: Up

 1: Down

 2: Left

 3: Right

 4: UpLeft

 5: UpRight

 6: DownLeft

 7: DownRight

scroll_step: The number pixels to scroll

Update_lcd:

 0: Do not update

 1: Update the cleared screen

Outputs

See Description

ChngContrast

http://dcs.cemetech.net/index.php?title=BasicLibs:ChngContrast

Description

Sets or gets the current contrast

Technical Details

Arguments

real(5, function, value)

function:

 0: Set contrast

 1: Current contrast is returned by the function into Ans, (value argument is ignored for this).

value: A value 0-39, where 0 is the lightest, and 39 is the darkest.

Doors CS 7 SDK
65

Chapter 3
BASIC Libraries

Outputs

Sets or gets the contrast, depending on function.

UpdateLCD

http://dcs.cemetech.net/index.php?title=BasicLibs:UpdateLCD

Description

Updates the screen with any changes made since the last update.

Technical Details

Arguments

real(6)

Outputs

LCD updated.

RunIndicator

http://dcs.cemetech.net/index.php?title=BasicLibs:RunIndicator

Description

Turns on or off the run indicator.

Technical Details

Arguments

real(7, value)

value:

 0: Off

 1: On

Outputs

Run indicator enabled or disabled.

GetKey

http://dcs.cemetech.net/index.php?title=BasicLibs:GetKey

Description

Reads the keypad for any keypress. This function will not block, and it'll return zero if no keys

were pressed at the time. This routine supports multiple arrow key presses.

The key codes are as follows as it appears on the keyboard:

Doors CS 7 SDK
66

Chapter 3
BASIC Libraries

Technical Details

Arguments

real(8)

Outputs

Numeric keycode, as above.

CreatePic

http://dcs.cemetech.net/index.php?title=BasicLibs:CreatePic

Description

Draws or deletes a picture variable.

+---+

| F1 F2 F3 F4 F5 |

| [53]----[52]----[51]----[50]----[49] |

| ______________ |

| 2nd MODE DEL / 7 Up 8 \ |

| [54]----[55]----[56] | / 4 \ | |

| | Left 2 3 Right | |

| Alpha x,T,0,n STAT | \ 1 / | |

| [48]----[40]----[32] | 5 Down 6 | |

| ______________/ |

| MATH APPS PRGM VARS CLEAR |

| [47]----[39]----[31]----[23]----[15] |

| |

| X^-1 SIN COS TAN ^ |

| [46]----[38]----[30]----[22]----[14] |

| |

| X^2 , () / |

| [45]----[37]----[29]----[21]----[13] |

| |

| LOG 7 8 9 * |

| [44]----[36]----[28]----[20]----[12] |

| |

| LN 4 5 6 - |

| [43]----[35]----[27]----[19]----[11] |

| |

| STO 1 2 3 + |

| [42]----[34]----[26]----[18]----[10] |

| |

| ON 0 . (-) ENTER |

| [N/A]----[33]----[25]----[17]----[9] |

+---+

Other (unofficial) codes:

57 = left/right

58 = left/right/down

59 = up/down

60 = up/left/down

61 = up/right/down

62 = up/right/left

63 = all arrow keys mashed

Doors CS 7 SDK
67

Chapter 3
BASIC Libraries

Technical Details

Arguments

real(9, function, pic#[,full-size])

function:

 0: Update the screen from buffer and copy what's there

 1: Delete Pic (not undoable. Exercise caution)

 2: Copy image from buffer to pic without updating screen

Pic#: a number between 1 and 255, corresponding to the pic number. pic0=10

Full-Size: If this is 1, then the created image is 64 rows high. If this argument is 0 or omitted,

then the created image is the BASIC-standard 63 rows high.

Outputs

See Description

ExecArcPrgm

http://dcs.cemetech.net/index.php?title=BasicLibs:ExecArcPrgm

Description

Ans contains the name of the program you want to use in a string, then you use the function,

then you run the generated temporary program file according to temp_prog_number. But,

you'll need to know the function codes to further explain how this works:

 * 0: Copy file to a file numbered by temp_prog_number

 * 1: Delete a temporary file numbered by temp_prog_number

 * 2: Delete all temporary files.

For example, say you wanted to copy an archived program "FOO" to prgmXTEMP002, do the

following:

"FOO":real(10,0,2):prgmXTEMP002

If you wanted to do this to an ASM program "BAR" and have it copied to the 12th temporary

file, do the following:

"BAR":real(10,0,12):Asm(prgmXTEMP012)

If you decided you are done with the copy of "FOO" from the first example and you wanted to

delete it, do this:

real(10,1,2)

That will delete prgmXTEMP002 but will not touch the original file.

If you want to clean up (get rid of all temp files), you can do the following:

Doors CS 7 SDK
68

Chapter 3
BASIC Libraries

real(10,2)

Files will not be overwritten if you attempt to copy to a preexisting temp file.

Technical Details

Arguments
"PRGMNAME

real(10,function,temp_prog_number)

prgmXTEMP0XX or :Asm(prgmXTEMP0XX), depending on format.

Outputs

See Description

GetCalcVer

http://dcs.cemetech.net/index.php?title=BasicLibs:GetCalcVer

Description

Outputs a number to Ans indicating which type of calculator is being used:

 0: 83+

 1: 83+ SE

 2: 84+

 3: 84+ SE

Technical Details

Arguments

real(11)

Outputs

Number indicating calculator model

DrawShape

http://dcs.cemetech.net/index.php?title=BasicLibs:DrawShape

Description

Draws a shape define by points (x1,y1) and (x2,y2). If update_LCD is 0, the screen will not be

updated, otherwise it will.

Technical Details

Arguments

real(12,shape_type,x1,y1,x2,y2,update_LCD)

Doors CS 7 SDK
69

Chapter 3
BASIC Libraries

shape_type:

 0 = Draw a single BLACK LINE.

 1 = Draw a single WHITE LINE.

 2 = Draw a single INVERTED LINE.

 3 = Draw an EMPTY RECTANGLE with BLACK OUTLINE

 4 = Draw an EMPTY RECTANGLE with WHITE OUTLINE

 5 = Draw an EMPTY RECTANGLE with INVERTED OUTLINE

 6 = Draw a RECTANGLE with a BLACK FILLING

 7 = Draw a RECTANGLE with a WHITE FILLING

 8 = Draw a RECTANGLE with an INVERTED FILLING

 9 = Draw a WHITE RECTANGLE with a BLACK OUTLINE

 10 = Draw a BLACK RECTANGLE with a WHITE OUTLINE

x1: top left x coordinate

y1: top left y coordinate

x2: bottom x coordinate

y2: bottom y coordinate

Update_lcd:

 0: Do not update

 1: Update the cleared screen

Outputs

Shape drawn to graph buffer and possibly LCD, if specified.

TextMode

http://dcs.cemetech.net/index.php?title=BasicLibs:TextMode

Description

Performs a text-related function, if function is:

 0: Unsets the text inverse function

 1: Sets text inverse

 2: Sets lowercase access. (press Alpha twice)

 3: Unsets lowercase support

 4: See note below.

Some menus in the TI-OS will reset these flags.

Note: For command 4, you can output a character onto the screen given a character ASCII

code, some number between 0 and 255. As a hint, the space is 32, the upper-case letter "A" is

65, and the checkerboard cursor is 241.

Technical Details

Arguments

real(13,function,[character])

Doors CS 7 SDK
70

Chapter 3
BASIC Libraries

Outputs

See description

CheckRAM

http://dcs.cemetech.net/index.php?title=BasicLibs:CheckRAM

Description

Returns the amount of free RAM, measured in bytes.

Technical Details

Arguments

real(14)

Outputs

Bytes of free RAM.

Doors CS 7 SDK
71

Chapter 3
BASIC Libraries

Omnicalc Compatibility Routines

Sprite

http://dcs.cemetech.net/index.php?title=BasicLibs:Sprite

Description

Emulates the Omnicalc function sprite().

Technical Details

Arguments

real(20,pic#,picX,picY,w,h,x,y,[logic])

Outputs

Sprite drawn.

ExecAsm

http://dcs.cemetech.net/index.php?title=BasicLibs:ExecAsm

Description

Executes the given string of hex. Does not automatically append $C9.

Technical Details

Arguments

real(33,"HEXSTRING")

Outputs

Hex executed

Doors CS 7 SDK
72

Chapter 4
Overview of Doors CS ASM Tools and Features

CHAPTER 4

OVERVIEW OF DOORS CS ASM TOOLS AND FEATURES

Doors CS offers extensive tools for burgeoning ASM programmers to explore the power and

capability of the shell. This SDK contains everything you need to turn your source code into

executable programs to load on your favorite calculator or emulator, as well as more than

enough documentation to get you there. If you get stuck, remember to come to the

Cemetech forum (http://www.cemetech.net) and ask any questions, explain any comments,

or expound any criticisms that you may have.

This SDK is specifically tailored to work in 32-bit and 64-bit environments, under Windows

2000 through Windows 7 and above, on Mac OS X, and on most popular Linux distributions.

There are some prerequisites, as noted in the appropriate sections below.

Documentation: The Doors CS Wiki
While this extensive document contains a wealth of up-to-date, carefully-checked

information, new features are always being added to Doors CS, bugfixes are occasionally

implemented, and mistakes are sometimes found. Be sure to frequent the Doors CS wiki at

http://dcs.cemetech.net to view the latest documentation and look for new versions of Doors

CS.

Assembling Suite and Compile.bat/Compile.sh
In the interest of making the process of creating programs for Doors CS as painless and

straightforward as possible, this SDK contains a complete toolchain to turn source code into

.8xp files. Place your source code in the /asm/source folder; indeed, two sample programs

have been included. If you have any include files, be sure to put them in the /asm/tasm

folder. In a command prompt, you will be typing either “compile docde7” (on Windows) or

“./compile.sh docde7” (on Linux) if your program was docde7.asm or docde7.z80. The script

will compile your program with Brass. Executable .8xp files end up in the /asm/exec directory,

and List files containing annotated source go in the /asm/list/ directory. To recap:

Windows Users

To compile docde7.asm or docde7.z80 into DOCDE7.8xp, open a command prompt ([Win][R],

cmd, [enter]), use cd to navigate to the \asm\ directory of this SDK, and then type:

compile docde7

(or compile docde7.asm or compile docde7.z80). You no longer need Python, unless

you are using BinPac8x.

Doors CS 7 SDK
73

Chapter 4
Overview of Doors CS ASM Tools and Features

Linux/Mac Users

To compile docde7.asm or docde7.z80 into DOCDE7.8xp, open a terminal, use cd to navigate

to the /asm/ directory of this SDK, and then type:

./compile.sh docde7

(or ./compile.sh docde7.asm or ./compile docde7.z80). In some circumstances it

may be necessary to chmod +x compile.sh. You must have the program “mono” to assemble

using Brass; you no longer need Python unless you’re using BinPac8x. Please consult your

distribution’s documentation about how to install packages.

Doors CS 7 Include File
The Doors CS 7 include file (dcs7.inc) is optimized for use with the included compilation

package. Simply #include “dcs7.inc” after you #include “ti83plus.inc”, and everything should

work properly. If there are any problems that you can’t fix on your own, please report them

on the Cemetech forum. The include files defines all of the routines in this document for ASM

programmers, as well as constants for general use and for GUI API users.

Doors CS Tools for ASM Programmers

Types of Programs

There are four main types of “programs” that programmers can write for Doors CS. The most

common type is a simple executable program, with a header optionally defining an icon, a

description, and shared libraries to be used. A more complex type of executable program can

open files of a specified type, just like Notepad in Windows can open .txt files but [browser of

your choice] opens .html files. Finally, there are Shell Expansions (SEs), small to medium-sized

modules that plug into Doors CS and provide realtime functions while in Doors CS itself, and

Appended Library Extensions (ALEs), which are used to share routines and code among

several programs.

Program Headers

The Doors CS header for simple executables follows a fairly standard form. There are some

variations based on whether you want to include an icon or a description, or use any

Appended Library Extensions (ALEs), the latter of which are all but deprecated at this point.

Programs utilizing the Associated Program system that lets Doors CS automatically open files

with an associated viewer take an expanded header, as described in the chapter on the

subject. Without further ado, the most minimal Doors CS header:

Doors CS 7 SDK
74

Chapter 4
Overview of Doors CS ASM Tools and Features

This program takes advantage of almost no features of the Doors CS header, other than

specify that it is a DCS 7.0 program. The opposite end of the spectrum contains an icon, a

description, and ALEs, as shown below. Most programs written should have an icon and a

description, but will not use ALEs.

; Program Name:

; Author:

; Version:

; Date:

; Written for Doors CS 7.0 and higher (http://dcs.cemetech.net)

.nolist

#include "ti83plus.inc"

#include "dcs7.inc"

.list

 .org progstart ;.equ $9d93, by the way

 .db $BB,$6D

Init:

 xor d

 ret

 jr Start

 .dw $0000 ;No Description

 .db $07,$00 ;always this string

 .dw $0000 ;No Icon

 .dw $0000 ;No ALEs

Start: ;main routines

 ;etc etc etc

 ;ret

Doors CS 7 SDK
75

Chapter 4
Overview of Doors CS ASM Tools and Features

The GUI API

; Program Name:

; Author:

; Version:

; Date:

; Written for Doors CS 7.0 and higher (http://dcs.cemetech.net)

.nolist

#include "ti83plus.inc"

#include "dcs7.inc"

.list

 .org progstart ;.equ $9d93, by the way

 .db $BB,$6D

Init:

 xor d

 ret

 jr Start

 .dw Description ;or .dw $0000 if you don't have a desc

 .db $07,$00 ;always this string

 .dw Icon ;or .dw $0000 if you don't have an icon

 .dw ALE ;usually .dw $0000 if you don't

 ;have or know what an ALE is

Start: ;main routines

 ;etc etc etc

 ;ret

;The following is at the end of the program

Description:

 .db "Description",0 ;can be omitted if .dw Description

 ;is .dw 0000 above

Icon: ;a 16x16 icon (can be omitted if

 ;.dw Icon is .dw 0000 above)

 .db %11111111,%11111000

 .db %10000000,%00001100

 .db %10111100,%00001010

 .db %10010010,%00001111

 .db %10010010,%01010001

 .db %10010010,%10101001

 .db %10111100,%01010101

 .db %10000000,%00000001

 .db %10101010,%10101001

 .db %10010101,%01010101

 .db %10101010,%10101001

 .db %10000000,%00000001

 .db %10010101,%01010101

 .db %10101010,%10101001

 .db %10000000,%00000001

 .db %11111111,%11111111

ALE: ;must be omitted if .dw ALE is .dw

0000 above

 .db "ZALE",0,0,0,0 ;always eight bytes, use

 .db "ZLALE",0,0,0 ;zeros for extra bytes

Doors CS 7 SDK
76

Chapter 4
Overview of Doors CS ASM Tools and Features

The Associated Program System

As mentioned briefly above, the Associated Program system lets your program claim one or

more filetypes as files it knows how to open (and can potentially save). There is a special

header format to deal with this case, which allows Doors CS to do all the dirty work with

copying data to RAM, providing pointers, cleaning up, and performing writeback when

necessary. There is a whole chapter in this document devoted to explaining the Associated

Program system.

Other Features

Doors CS provides many other powerful systems, such as a RunProg routine that can execute

any program recursively, be it ASM or BASIC, an executable or an AP file, then eventually

return control to your program when the called program completes. It contained now-

defunct networking drivers that will be resurrected in the near future. It clones the MirageOS

tasker interrupt that can perform supervisory tasks for programs.

Doors CS contains a wealth of features, many of which have existed for so long or are

relatively minor and have been lost in the shuffle of development. Check the Doors CS wiki

for any updated information omitted from or abbreviated in this document.

Doors CS 7 SDK
77

Chapter 5
The Doors CS GUI API

CHAPTER 5

THE DOORS CS GUI API

The Doors CS GUI API uses an innovative stack-based system to handle the creation,

rendering, and use of GUI-enabled programs. This system has a twofold advantage. Firstly, the

sequential order makes it easy to "push" new windows or elements to the top above existing

GUI elements, then "pop" them off to return to a backgrounded window. Secondly, by

identifying each chunk of data on the stack with a size word and type byte, the stack can

easily be traversed backwards and forwards for parsing and properly handle dynamic sizing of

array elements.

In utilizing the stack, you will be addressing elements by index from the bottom of the stack,

not by absolute or relative memory location, thus avoiding nearly all the problems of dynamic

memory allocation. Without further ado, let's go through the steps of creating, rendering, and

handling a GUI element. As with all other sections of this SDK, you can find the most up-to-

date version of this chapter at http://dcs.cemetech.net/index.php?title=GUI_API.

Working with the GUI API

Initializing the GUI

Before you can do anything with the GUI, you must initialize it by calling OpenGUIStack. This

will create an Appvar called gui6 (if it doesn't already exist) and initialize its contents to an

empty stack. If in doubt whether the GUI Stack is open yet, call this function anyway; it will

silently handle a stack already open and report this state in register c. Once the stack is open,

you can begin to push elements onto it.

Adding GUI Elements

The function for adding elements to the top of the stack is PushGUIStack, defined in dcs7.inc.

It takes three arguments, a pointer to the data to be added in hl, the size of the data to add in

de, and the type in the accumulator, a. All of the different types are defined in dcs7.inc and

can also be referred to numerically as outlined in the documentation for each GUI type. The

data pointed to by hl should only contain the data to be added, not the three-byte header

that Doors CS adds to the GUI Stack before the data. For example, suppose you wanted to add

a small window to the current GUI:

Doors CS 7 SDK
78

Chapter 5
The Doors CS GUI API

Space-Efficiency: Adding Multiple Elements at Once

If you want to add multiple elements to the GUI at once without repeatedly calling the

PushGUIStack function, an alternative function called PushGUIStacks exists (note the

pluralization). This takes only one argument, a pointer in hl to a specially-formatted mass of

GUI data. The data must contain one or more GUI elements, each specified as a 2-byte size

word, a one-byte type byte, and then the one-or-more byte GUI element. The size word

should be three bytes larger than if it was the value of de being passed to PushGUIStack; in

other words, it represents the size of this item including the type byte and the size word itself.

Additional elements in the sequence to be pushed follow the same format. After the last

item, to signal that the end of the sequence has been reached, two bytes of $ff (.db $ff,$ff)

should be used. The following two-item sequence example is taken from within Doors CS

itself:

Rendering the GUI

You can choose two different methods of handling the GUI: rendering the current Stack and

then handling input yourself, or handing full control over to Doors CS. If you choose the latter,

Doors CS will render the Stack, initiate the mouse subsystem, then wait for the user to click on

an actionable item. The function to merely render the GUI is RenderGUI, and the function to

hand over full control is GUIMouse. Keep in mind that GUIMouse has a few important

restrictions on its usage to maintain the stability of the users' calculators:

SimpleGUIMouseData:

 .dw 4

 .db 0

 .db $fe

SimpleGUIMouseDataHS:

 .dw 6+3

 .db $0e

 .db 0,0,96,64

 .dw dbfSimpleGUIMouseClick

SimpleGUIMouseDataEnd:

 .db $ff,$ff

ld hl,SmWinData

ld de,SmWinDataEnd-SmWinData

ld a,GUIRSmallWin

call PushGUIStack

...

SmWinData:

 .db 5,5 ;the x and y coordinates relative to the LCD of the

 ;top-left of the window

 .db $F8,$88,$88,$88,$F8 ;a square icon

 .db "My Window",0 ;the window title
SmWinDataEnd:

Doors CS 7 SDK
79

Chapter 5
The Doors CS GUI API

1. Always, always have a ld hl,0 immediately before call GUIMouse unless you specifically

are adding a mouse hook.

2. At functions jumped to as a result of clicking in GUIMouse, it is vital to have a call

ResetAppPage as the first instruction after the label so that Doors CS is reset to the

proper page.

3. Always use the following format to call GUIMouse. Do not jump to it, ever. This will

fatally disturb the normal stack:

Note of course that so such caveats apply to RenderGUI, which simply renders the GUI and

returns to the next line in your program.

Accessing Modified Data

After calling GUIMouse, items in the GUI Stack may have been modified, including the states

of radio buttons and checkboxes and the contents of text and numerical entry fields. In order

to figure out what the current data of an element in the GUI Stack is, you can use GUIFindFirst

and GUIFindNext. You must always start by calling GUIFindFirst; this will give the address and

size of the first non-groupmaster element on the stack. A groupmaster element is a

GUIRnull, a GUIRSmallWin, or a GUIRLargeWin. You can then use GUIFindNext to find

subsequent entries in the GUI Stack. Be aware that while GUIFindFirst skips groupmaster

elements, GUIFindNext sequentially finds all following entries, including groupmasters.

As of Doors CS 6.6 beta or thereabouts, a third function is available called GUIFindThis, which

works very very quickly compared with a series of GUIFindFirst/GUIFindThis/GUIFindThis

calls, particularly if the user has a lot of programs.

The following diagram should clarify how accessing the data works. The scenario pictured

involves a GUIRLargeWin pushed with several items, then a GUIRSmallWin pushed on top of it

with several items of its own. The programmer calls GUIFindFirst, then GUIFindThis so that he

or she can check if the checkbox is checked or not.

ld hl,0 ;this can be nonzero if you have a MouseHook

call GUIMouse

ret

Doors CS 7 SDK
80

Chapter 5
The Doors CS GUI API

Removing GUI Elements

After finishing with parts of the GUI, you can remove items individually or in bulk. For a single

GUI entry, use PopGUIStack. If you want to remove multiple elements at once, load the

number of elements to be removed into register b and call PopGUIStacks. Doors CS will

handle all updating of pointers, memory, and size. However, keep in mind that pointers to

variables created after the GUI Stack was opened may need to be updated to take the new

size of the gui6 Appvar into account.

Closing the Stack

When you are done using the GUI, you can remove all GUI elements and close down the API

system with the call CloseGUIStack. It is not necessary to pop elements off of the stack before

closing it; the CloseGUIStack call will take care of that.

Example of a Simple GUI Program
Using the GUI system is mainly a matter of pushing a bunch of elements onto the stack, then

doing things based on what is done. For example, the following code (should, it's untested)

spawns a GUIRSmallWin at the center of the screen with a 'Crash' button which (surprise,

surprise) crashes the calculator, as well as a close button in the form of GUIRWinButtons. This

program could be made more efficient through use of the PushGUIStacks function, but has

been left simpler and less efficient for the sake of clarity.

GUIStack

GUIRLargeWin

GUIRWinButtons

GUIRText

GUIRSmallWin

GUIRWinButtons

GUIRCheckBox

GUIRButtonText

GUIRFindFirst

GUIRFindNext

Doors CS 7 SDK
81

Chapter 5
The Doors CS GUI API

GUI Memory Areas
Due to the complexity of the GUI system, several pieces of RAM may be overwritten while it is

running. They are:

 call OpenGUIStack

 ld hl,myWin

 ld de,crashButton-myWin

 ld a,GUIRSmallWin

 call PushGUIStack

 ;this spawns our small window, which holds all other objects

 ;we spawn, until we spawn another groupmaster element

 ld hl,crashButton

 ld de,winButtons-crashButton

 ld a,GUIRButtonText

 call PushGUIStack

 ;just spawned the 'Crash button'

 ld hl,winButtons

 ld de,dat_end-winButtons

 ld a,GUIRWinButtons

 call pushGUIStack

 ;added the close button to the window's title bar

 ld hl,0 ;very important

 call GUIMouse ;handles everything, woo

 ret ;exit the program

exitMyProg:

 call ResetAppPage

 ret

;it jumps here upon clicking the exit button, and this returns us back

;to where the call to GUIMouse is

myWin:

 .db 15 ;x coordinate of the window, 15 makes it centered

 .db 15 ;same, but y coordinate

 .db 0,0,0,0,0 ;just a blank icon, since I'm lazy

 .db "Crash me!",0 ;the window title

crashButton:

 .db 1 ;x coordinate- this is the coordinate WITHIN THE

 ;CURRENT GROUPMASTER, not overall

 .db 1 ;y coordinate- see above

 .dw 0 ;I'm just having it jump to 00h when you click this,

 ;it's just the easiest way to crash it

 .db "Crash!",0 ;the text to display on the button

winButtons:

 .db 00100000b ;only displaying a close button

 .dw 0 ;null pointer

 .dw 0 ;another null pointer

 .dw exitMyProg ;we'll jump to exitMyProg when this button is

clicked

dat_end:

Doors CS 7 SDK
82

Chapter 5
The Doors CS GUI API

• 73 bytes starting at AppBackupScreen (used for GUI rendering and mouse) (for future

compatibility, it is recommended to leave the first 129 bytes of AppBackupScreen free,

if possible)

• 4 bytes starting at iMathPtrs (used only in the GUI mouse)

• 4 bytes starting at iMathPtrs+5 (used only in FileOpen and FileSaveAs)

• RelocatablePtr and RelocatablePtr2 (used only in FileOpen, FileSave, and FileSaveAs)

In addition, you should be aware that Doors CS will change the size and contents of the

'gui6'/'gui7' appvar during GUI execution. It will also change the contents, but not size of the

DCS6/DCS7 appvar during GUI execution. It is not recommended that you use undeclared

areas of the free user ram for storage while the GUI stack is open, as data corruption may

occur. Declare any RAM you need as programs or appvars. Also remember to update pointers

if your data file is in higher RAM than the gui6/gui7 appvar. In general, if you use the

Associated Program (AP) system, Doors CS will handle keeping gui7 in higher memory than

any AP file that is opened. Another important note is that the three GUI text input types,

GUIRTextLineIn, GUIRPassIn, and GUIRTextMultiline all use an edit buffer, which temporarily

consumes all of free RAM (but only when the user is actually typing in that text box).

Therefore, be sure not to store any data in free RAM above in-RAM programs, which is already

a bad idea to begin with. The most up-to-date information from this section can be found at

http://dcs.cemetech.net/index.php?title=GUI_Memory_Areas.

GUI Stack Items
• GUIRnull - Provides a non-rendered invisible GUI wrapper

• GUIRLargeWin - Provides a fullscreen GUI wrapper window

• GUIRSmallWin - provides a windowed GUI wrapper

• GUIRFullScreenImg - Renders a 96x64 image to the screen

• GUIRText - Renders a single line of text

• GUIRWinButtons - Adds clickable Minimize/Maximize/Close buttons to a window

• GUIRWrappedText - Renders a wrapped chunk of text

• GUIRButtonText - Renders and handles a clickable button with text

• GUIRButtonImg - Renders and handles a clickable button with an icon

• GUIRTextLineIn - Renders and handles a plaintext single-line input element

• GUIRRadio - Renders and handles a radio button member of a group

• GUIRCheckbox - Renders and handles a checkbox

• GUIRByteInt - Renders and handles a 1-byte numerical input spinner

• GUIRWordInt - Renders and handles a 2-byte numerical input spinner

• GUIRHotspot - Creates an onClick area to an external routine

• GUIRTextMultiline - Renders and handles multiline plaintext input

• GUIRSprite - Draws a small (8 by n) sprite to the screen

Doors CS 7 SDK
83

Chapter 5
The Doors CS GUI API

• GUIRLargeSprite - Draws a large (8*m by n) sprite to the screen

• GUIRPassIn - Renders and handles a password single-line input element

• GUIRScrollVert - Renders and handles a vertical scrollbar

• GUIRScrollHoriz - Renders and handles a horizontal scrollbar

• GUIRBorder - Draws an unfilled rectangular border

• GUIRRect - Draws a filled rectangle

• GUIRCustom - Calls out to a custom rendering routine

• GUIRMouseCursor - Allows the cursor to change within a specified rectangular area

GUIRNull

Null Window Entry (Type ID 0)

http://dcs.cemetech.net/index.php?title=GUIRnull

Description

This item is one of the three possible items that start a GUI stack entry: GUIR Null, GUIR Small

Window, and GUIR Large Window. This item only acts as a placeholder and container for the

data within it; it does not render anything to the screen.

Format

Datalength: 1 byte

0: $FF (for an opaque background) or $FE (for a transparent background) [1 byte]

GUIRLargeWin

Large Window Item (Type ID 1)

http://dcs.cemetech.net/index.php?title=GUIRLargeWin

Description

This item is one of the three possible items that start a GUI stack entry: GUIR Null, GUIR Small

Window, and GUIR Large Window. This item acts as a container for the data within it; it also

renders a large window onto the screen.

Format

Datalength: 7+ bytes

Doors CS 7 SDK
84

Chapter 5
The Doors CS GUI API

0: 5x5 icon [5 bytes]

5: zero-terminated title string [2+ bytes]

GUIRSmallWin

Small Window Item (Type ID 2)

http://dcs.cemetech.net/index.php?title=GUIRSmallWin

Description

This item is one of the three possible items that start a GUI stack entry: GUIR Null, GUIR Small

Window, and GUIR Large Window. This item acts as a container for the data within it; it also

renders a small window onto the screen, preserving any items behind it.

Format

Datalength: 9+ bytes

0: x-coordinate of upper-left (0-15) [1 byte]

1: y-coordinate of upper-left (0-15) [1 byte]

2: 5x5 icon [5 bytes]

7: zero-terminated title string [2+ bytes]

Notes

As of Doors CS 6.6 beta and above, pressing the [Clear] key on the calculator's keypad is now a

shortcut to click the [X] at the top-right of a GUIRSmallWin, if such a button exists. If you wish

to override this behavior, you may create a MouseHook (see GUIMouse) to catch and handle

the [Clear] key.

GUIRFullScreenImg

Full-Screen Image Entry (Type ID 3)

http://dcs.cemetech.net/index.php?title=GUIRFullScreenImg

Description

This item should normally be used with a GUIRNull item to provide a custom background to a

GUI or window. It is useful for showing non-GUI content in the background of things like a

small window.

Doors CS 7 SDK
85

Chapter 5
The Doors CS GUI API

Format

Datalength: 768 bytes

0: (a 96x64 bit-encoded monochrome image) [768 bytes]

GUIRText

Static Non-Wrapping Text Entry (Type ID 4)

http://dcs.cemetech.net/index.php?title=GUIRText

Description

This item places static text in the GUI using the custom Doors CS text routines. It supports

multiple fonts, but this feature is not yet activated; only the default font, fontset '0', is

available.

Format

Datalength: 5+ byte

0: x-coord of leftmost text column [1 byte]

1: y-coord of row above text [1 byte]

2: font (always 0 for DCS7) [1 byte]

3: zero-terminated text string [two or more bytes]

GUIRWinButtons

Clickable Window Titlebar Button Entry (Type ID 5)

http://dcs.cemetech.net/index.php?title=GUIRWinButtons

Description

This item places one or more of the possible window titlebar buttons, close, maximize, and/or

minimize, in the upper=right of the current GUI. It should only be used with GUIRSmallWin or

GUIRLargeWin items; use with GUIRnull will probably cause a crash.

Format

Datalength: 7 bytes

0: button flags: %[-],[o],[x],00000. Any bit set means that button should be shown. [1 byte]

1: Onclick pointer for [-] (or 0 if not present) [2 bytes]

3: Onclick pointer for [o] (or 0 if not present) [2 bytes]

5: Onclick pointer for [x] (or 0 if not present) [2 bytes]

GUIRWrappedText

Static Wrapping Text Item (Type ID 6)

http://dcs.cemetech.net/index.php?title=GUIRWrappedText

Description

This item places text on the screen; it will wrap at a $D6 or if the width exceeds (width). Does

not check for overflowing the bottom of the window. As of Doors CS 6.9 beta, you can add

the two-byte sequence $D6,$01 in the middle of a string as a line break.

Doors CS 7 SDK
86

Chapter 5
The Doors CS GUI API

Format

Datalength: 6+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width (pixels) [1 byte]

3: font (always 0 in this version) [1 byte]

4: zero-terminated text string [2+ bytes]

GUIRButtonText

Clickable Text Button (Type ID 7)

http://dcs.cemetech.net/index.php?title=GUIRButtonText

Description

This item places a text button on the screen that jumps to a specified location in memory

when it is clicked.

Format

Datalength: 6+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: Onclick pointer [2 bytes]

4: zero-terminated text string [2+ bytes]

GUIRButtonImg

Clickable Image Button (Type ID 8)

http://dcs.cemetech.net/index.php?title=GUIRButtonImg

Description

This item places an image button on the screen that jumps to a specified location in memory

when it is clicked.

Format

Datalength: 11+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: Onclick pointer [2 bytes]

4: Image width in bytes [1 byte]

5: Button width in pixels [1 byte] (account for buttons that are not x8 wide)

6: Image data [image width in bytes times 5]

GUIRTextLineIn

Single-Line Plaintext Interactive Input (Type ID 9)

http://dcs.cemetech.net/index.php?title=GUIRTextLineIn

Doors CS 7 SDK
87

Chapter 5
The Doors CS GUI API

Description

This item places a single-line text input item onscreen. In the GUIMouse section, Doors CS

handles all text-editing functionality.

Format

Datalength: 7+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in pixels [1 byte]

3: Maximum characters allows [2 bytes]

5: Current offset from start of data string [2 bytes]

7: Zero-terminated string [1+ bytes]

GUIRRadio

Grouped Radio Button (Type ID 10/$0A)

http://dcs.cemetech.net/index.php?title=GUIRRadio

Description

This item renders a radio button to the screen in a specified group and handles all clicking

necessary.

Format

Datalength: 7+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: group [1 byte] (enumeration is arbitrarily defined by the programmer)

3: Current state [1 byte] (1 = selected)

4: Zero-terminated display string [1+ bytes]

GUIRCheckbox

Ungrouped Checkbox (Type ID 11/$0B)

http://dcs.cemetech.net/index.php?title=GUIRCheckbox

Description

This item renders a checkbox to the screen in a specified group and handles all clicking

necessary.

Format

Datalength: 7+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: group [1 byte] (enumeration is arbitrarily defined by the programmer)

Doors CS 7 SDK
88

Chapter 5
The Doors CS GUI API

3: Current state [1 byte] (1 = selected)

4: Zero-terminated display string [1+ bytes]

GUIRByteInt

Byte Input Spinner (Type ID 12/$0C)

http://dcs.cemetech.net/index.php?title=GUIRByteInt

Description

This item allows the user to choose a numerical value no smaller than 0 nor larger than 255

within predefined limits.

Format

Datalength: 5 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: initial value [1 byte]

3: Minimum allowed value [1 byte]

4: Maximum allowed value [1 byte]

GUIRWordInt

Word Input Spinner (Type ID 13/$0D)

http://dcs.cemetech.net/index.php?title=GUIRWordInt

Description

This item allows the user to choose a numerical value no smaller than 0 nor larger than 65535

within predefined limits.

Format

Datalength: 8 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: initial value [2 bytes]

3: Minimum allowed value [2 bytes]

4: Maximum allowed value [2 bytes]

GUIRHotspot

Clickable Hotspot (Type ID 14/$0E)

http://dcs.cemetech.net/index.php?title=GUIRHotspot

Description

This item creates an invisible, clickable hotspot for the mouse routine.

Format

Datalength: 6 bytes

Doors CS 7 SDK
89

Chapter 5
The Doors CS GUI API

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in pixels [1 byte]

3: height in pixels [1 byte]

4: Onclick pointer [2 bytes]

GUIRTextMultiline

Multi-line Interactive Text Input Element (Type ID 15/$0F)

http://dcs.cemetech.net/index.php?title=GUIRTextMultiline

Description

This item creates a text input element allowing CRLFs and more organized formatting (plus a

higher character limit) than the Single-line input element.

Format

Datalength: 7+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: number of rows [1 byte]

3: width in pixels [1 byte]

4: offset to start of onscreen text from start of string [2 bytes]

6: Zero-terminated string data [1+ bytes]

GUIRSprite

Small (8 x n) Sprite (Type ID 16/$10)

http://dcs.cemetech.net/index.php?title=GUIRSprite

Description

This item renders an 8 pixel by n pixel sprite.

Format

Datalength: 4+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: height in pixels [1 byte]

3: sprite data [height bytes]

GUIRLargeSprite

Large (8*m x n) Sprite (Type ID 17/$11)

http://dcs.cemetech.net/index.php?title=GUIRLargeSprite

Description

This item renders an 8*m pixel by n pixel sprite.

Doors CS 7 SDK
90

Chapter 5
The Doors CS GUI API

Format

Datalength: 5+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in bytes [1 byte]

3: height in pixels [1 byte]

4: sprite data [height*width bytes]

GUIRPassIn

Single-Line Interactive Password Input (Type ID 18/$12)

http://dcs.cemetech.net/index.php?title=GUIRPassIn

Description

This item places a single-line password input item onscreen. In the GUIMouse section, Doors

CS handles all text-editing functionality. Identical to Single-Line Text Input except for

obscured text rendering.

Format

Datalength: 7+ bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in pixels [1 byte]

3: Maximum characters allows [2 bytes]

5: Current offset from start of data string [2 bytes]

6: Zero-terminated string [1+ bytes]

GUIRScrollVert

Vertical Scrollbar (Type ID 19/$13)

http://dcs.cemetech.net/index.php?title=GUIRScrollVert

Description

This item places a clickable vertical scrollbar on the screen and handles all movement clicking

with associated handlers.

Note for onClick: (bc) and (bc+1) are the little-endian current values of the scrollbar position

for OnScrollUp and OnScrollDown.

Format

Datalength: 16 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: height in pixels [1 byte]

3: ID number [1 byte]

Doors CS 7 SDK
91

Chapter 5
The Doors CS GUI API

4: Increment/decrement per click [2 bytes]

6: Minimum value on scrollbar [2 bytes]

8: Maximum value on scrollbar [2 bytes]

10: Current value on scrollbar [2 bytes]

12: Onclick pointer for upward scrolling [2 bytes]

14: Onclick pointer for downward scrolling [2 bytes]

GUIRScrollHoriz

Horizontal Scrollbar (Type ID 20/$14)

http://dcs.cemetech.net/index.php?title=GUIRScrollHoriz

Description

T his item places a clickable horizontal scrollbar on the screen and handles all movement

clicking with associated handlers.

Note for onClick: (bc) and (bc+1) are the little-endian current values of the scrollbar position

for OnScrollLeft and OnScrollRight.

Format

Datalength: 16 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: height in pixels [1 byte]

3: ID number [1 byte]

4: Increment/decrement per click [2 bytes]

6: Minimum value on scrollbar [2 bytes]

8: Maximum value on scrollbar [2 bytes]

10: Current value on scrollbar [2 bytes]

12: Onclick pointer for leftward scrolling [2 bytes]

14: Onclick pointer for rightward scrolling [2 bytes]

GUIRBorder

Rectangular Unfilled Border (Type ID 21/$15)

http://dcs.cemetech.net/index.php?title=GUIRBorder

Description

This item renders an unfilled rectangular border onscreen.

Format

Datalength: 5 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in pixels [1 byte]

Doors CS 7 SDK
92

Chapter 5
The Doors CS GUI API

3: width in pixels [1 byte]

4: color (0x00 or 0xFF - intermediate values created dashed lines) [1 byte]

GUIRRect

Filled Rectangle (Type ID 22/$16)

http://dcs.cemetech.net/index.php?title=GUIRRect

Description

This item renders a filled rectangle onscreen

Format

Datalength: 5 bytes

0: x-coordinate [1 byte]

1: y-coordinate [1 byte]

2: width in pixels [1 byte]

3: width in pixels [1 byte]

4: fill color (0x00 or 0xFF - intermediate values created dashed lines) [1 byte]

GUIRCustom

Custom Rendering Routine (Type ID 23/$17)

http://dcs.cemetech.net/index.php?title=GUIRCustom

Description

This item calls a custom rendering routine in the render loop.

Format

Datalength: 2 bytes

0: pointer to render routines [2 bytes]

GUIRMouseCursor

User-Defined Cursor Shuffler (Type ID 24/$18)

http://dcs.cemetech.net/index.php?title=GUIRMouseCursor

Description

This item calls a custom rendering routine in the render loop.

Format

Datalength: 20 bytes

0: word-packed top-left y,x of affected area [2 bytes]

2: word-packed bottom-right y,x of affected area [2 bytes]

4: 8-byte cursor mask [8 bytes]

12: 8-byte cursor sprite [8 bytes]

Doors CS 7 SDK
93

Chapter 6
Associated Program (AP) System

CHAPTER 6

ASSOCIATED PROGRAM (AP) SYSTEM

The Associated Program (AP) system allows Doors CS to recognize specially-formatted

programs as data files with an associated viewer program. When the user runs the data files,

Doors CS recognizes them as AP files and instead launches the viewer program, giving it

pointers to the data file as necessary. It also handles unarchiving the file before running the

viewer and rearchives the files after the viewer closes.

Doors CS contains complex routines for transparently handling archived and unarchived AP

files so that the programmer need only write cases for unarchived files. Doors CS also takes

care of opening, saving, and saving with a new filename respectively via the FileOpen,

FileSave, and FileSaveAs routines. Doors CS dynamically associates files with viewers based

on the respective headers of programs on the current calculator, so different viewers can be

loaded on a calculator for the same file type. For good examples of Associated Programs in

action, take a look at Document DE 7 or mobileTunes v3.0.

The header format for an associated file contains eight bytes:

Associated programs must follow a variation on the standard Doors CS header for assembly

programs that specifies the file type(s) the program can open:

 .org datastart

 .db $BB,$6D ;required

 .db $C9 ;don't let the TI-OS run this

 .db $31,$80 ;this is an AP file

 .db 0,1,4 ;3-byte type code (see Registered Filetypes)

Start:

Doors CS 7 SDK
94

Chapter 6
Associated Program (AP) System

When a user simply runs the specified program from Doors CS, it will start at $9D95, jump to

Start, and begin executing there, as usual. If a user clicks a file meant to be opened with this

program, Doors CS will take care of copying the file to RAM if necessary, setting up the viewer

program, and then executing it. However, execution will start at APStart instead of at $9D95.

When the program begins executing at APStart, the ix register will contain a pointer to the

first data byte of the AP file, ie, the first byte after the 8-byte header. The header will be at ix-8

through ix-1, and the size of the file, including the 8-byte header, will be at ix-10 (LSB) and ix-9

(MSB). The size of the data section of the AP file is of course the file size minus 8.

Within your program, you can modify the AP file as necessary, including inserting memory

and deleting memory (be sure to update the size word accordingly!). Make sure you leave the

header intact, and only insert or delete memory at ix or higher. When your program quits,

Doors CS will writeback the file to the archive if necessary, or delete the temporary RAM copy

if it is unchanged. If you call the FileOpen, FileSave, or FileSaveAs within your program, any

open AP files will be closed, including removing the RAM copy and writing it back, even if the

user chooses not to open a new file. However, if the user chooses not to open a new file, the

previously-opened file will be reopened.

Please note that unlike computer programs, in which files must be periodically resaved, Doors

CS does not require any resaving. Simply update files via _InsertMem and _DeleteMem, and

update the size word of the files accordingly, and the file will be updated, and if necessary,

; Program Name:

; Author:

; Version:

; Date:

; Written for Doors CS 7.0 and higher (http://dcs.cemetech.net)

.nolist

#include "dcs7.inc"

.list

 .org progstart

 .db $BB,$6D

Init:

 xor d

 ret

 jr Start

 .dw $0000

 .db $07,$00

 .dw Icon

 .dw $0000

 .dw Apstart ;the routine to open files DCS will start you

 ;here instead of $9D95 if AP file pending

 .db $31,$7F ;argh, this be an APMain

 .db $02 ;number of accepted filetypes

MyTypes:

 .db 0,1,4 ;whatever this is

 .db 0,1,2 ;DDE6 text

Doors CS 7 SDK
95

Chapter 6
Associated Program (AP) System

automatically written back to archive by Doors CS. FileSave and FileSaveAs are only necessary

to create a file out of raw contents, or to duplicate an existing file.

If you create your own AP-enabled program, be sure to add the filetype to

http://dcs.cemetech.net/index.php?title=Registered_Filetypes to avoid conflicts with other

programs.

AP Routines
• FileOpen - hooks into the GUI system. Returns pointers to data.

• FileSave - creates a new file given a name, data, and size. GUIless.

• FileSaveAs - hooks into the GUI system. Creates a new file with specified name, data,

size, and type.

FileOpen

Description

Opens a GUI to open files. Fully supports the folder system etc.

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before opening a new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

back above any newly-opened files. Doors CS will handle closing any open AP files when your

program quits. Note that unlike Doors CS 6.4 beta and lower, Doors CS 6.5 and higher may

return pointers to an AP file even if the FileOpen was canceled, ie, the pointers to an already-

open file. Nevertheless, it is mandatory that any time FileOpen is called, any open AP file(s)

is/are ready to be written back and closed.

Inputs/Outputs/Destroyed

See FileOpen section in Routine Summary chapter

FileSave

Description

Create a new AP file with a given name, type, size, and data. Operates with no GUI.

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before creating the new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

Doors CS 7 SDK
96

Chapter 6
Associated Program (AP) System

back above any newly-created file. Doors CS will handle closing any open AP files when your

program quits.

Inputs/Outputs/Destroyed

See FileSave section in Routine Summary chapter

FileSaveAs

Description

Create a new AP file with a given type, size, and data. Operates with a GUI, used to ask the

user for a name for the file, and optionally a folder in which to store the new file.

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before creating the new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

back above any newly-created file. Doors CS will handle closing any open AP files when your

program quits.

Inputs/Outputs/Destroyed

See FileSave section in Routine Summary chapter

Doors CS 7 SDK
97

Chapter 7
CALCnet2.2

CHAPTER 7

CALCNET2.2

CALCnet2.2 offers a robust, asynchronous end-to-end transport protocol capable of dynamic,

stateless network topology recon?guration, error detection and recovery, and full network

features such as arbitrary simultaneous disjoint communication. It supports one-to-one

directed transmissions and one-to-many broadcasts to support as wide a set of applications

as possible, and is targeted at utilities, chat programs, ?le-transfer programs, conference

applications, and especially multiplayer and massively-multiplayer gaming on TI graphing

calculators. As of this publication, the CALCnet2.2 protocol has been written into Doors CS 7.2,

a shell and GUI developed for calculators by the author. It can be used on TI-83+, TI-83+ Silver

Edition, TI-84+, and TI-84+ Silver Edition graphing calculators, as well as via the TI-84+

emulator on the TI-Nspire calculator.

Routines
CALCnet2.2 is designed to be relatively easy for programmers to use with minimal

complications and training, and to that end exposes only four functions to assembly

programmers, two of which need not be used in general programs. The four functions are as

follows:

Cn2_Setup - Initialize the CALCnet2.2 system, including starting the interrupt and setting up

the memory areas and buffers to be used by CALCnet . Once this routine has been called, 547

bytes starting as SavesScreen ($86EC) will be used by CALCnet and should not be used other

than the methods to clear buffers manually or automatically as outlined below. In addition,

the RAM segment of the CALCnet2.2 interrupt is stored in 42 bytes starting at $9999 and

ending at $99C3, and the jump table uses 257 bytes from $9A00 to $9B01.

Cn2_Setdown - Disabled the CALCnet2.2 interrupt, after which the CALCnet buffers can be

used again as normal safeRAM.

Cn2_ClearSendBuf - Clears the receive buffer, a total of 256+5+2=263 bytes. In practice, the

receive buffer may be conceptually cleared as far as the interrupt is concerned simply by

resetting the MSB of the size field in the buffer, after which you may receive a new frame.

Cn2_ClearRecBuf - Clears the send buffer, a total of 256+5+2=263 bytes. In practice, the send

buffer may be conceptually cleared as far as the interrupt is concerned simply by resetting the

MSB of the size field in the buffer, after which you may load in a new frame.

It has been shown that these sets of functions and features are sufficient to create a large set

of network-aware games and applications. A screenshot of a sample application that has

been released called NetPong v1.0 can be seen below.

Doors CS 7 SDK
98

Chapter 7
CALCnet2.2

Coding Practices

There is one additional function that CALCnet2.2 programs should use; because the TI-OS

interrupt that handles GetCSC is disabled while CALCnet is active, programmers should use

call Cn2_GetK instead. It will debounce the keys entered, so for non-debounced, repeating

keypresses like movement in a game, direct input should be used. Programs should also be

careful of TI-OS ROM calls (bcalls) that disable or enable interrupts, such as _RunIndicOff

and _RunIndicOn, and use alternatives for such routines. The CALCnet2.2 interrupt will handle

turning the calculator off and on via the [ON] key, so user programs need not provide this

functionality. Finally, be aware that during the CALCnet interrupt every calculator, regardless

of type, will be running in 6MHz mode. Programs that require 15MHz mode are

recommended not to simultaneously use 15MHz mode and CALCnet2.2: although the

interrupt will properly handle transitioning to 6MHz mode for its duration and returning to

15MHz mode before the user program resumes execution, 15MHz mode will cause the

CALCnet interrupt to trigger at 275Hz instead of 110Hz, thus spending proportionally more

time in the interrupt than in the user program, and possibly nullifying the objective of 15MHz

mode (ie, faster execution of the user program).

Memory Areas

As mentioned previously, CALCnet2.2 relies on the use of buffers to send and receive data.

Programs need not call any routines in order to initiate transmission or reception of data,

allowing for asynchronous, nonblocking communication. This means that a program can

leave data to be sent over the network in a buffer and continue to execute; CALCnet will

handle attempting to send the specified data until it succeeds. Similarly, the interrupt listens

constantly (technically, 110 times per second) for data to be sent to the calculator, and will

store any such data in a buffer until fetched by the userland program. Needless to say, it is

important to periodically check for received data and remove it so that CALCnet can accept

another frame. The memory areas used by CALCnet are enumerated in the table below and

are further enumerated in the remainder of this section.

Address Offset Size Function
$86EC 0 2 not for userland user
$86EE 2 5 Current calc's ID (do not modify)

$86F3 7 5 Receive buffer sender ID
$86F8 12 2 Receive buffer size word
$86FA 14 256 Receive buffer
$87FA 270 5 Send buffer receiver ID
$87FF 275 2 Send buffer size word

Doors CS 7 SDK
99

Chapter 7
CALCnet2.2

$8801 277 256 Send buffer
$8901 533 15 not for userland use

Caveats

It has been found that there are several TI-OS related caveats of which to be aware when

using CALCnet2.2. All such caveats are due to the interactions between the TI-OS and user

interrupts (Interrupt Mode 2 ISRs, such as CALCnet). It has been found that certain TI-OS

bcalls, especially those that potentially interact with the LCD, maybe improperly disable

interrupts including the CALCnet ISR. Known culprits including _vputs and _vputmap, but

other ROM calls are likely to cause problems. It is strongly recommended that programs that

using the CALCnet2.2 ISR re-enable interrupts via ei after one or more of such calls. If there are

sections of your code that may or may not have interrupts enabled, the following

construction may be used (thanks to Brenden "Calc84Maniac" Fletcher for his assistance):

 ;begin protected section

 xor a

 push af

 pop af

 ld a,i

 jp pe,sectionbody

 dec sp

 dec sp

 pop af

 add a,a

 jr z,sectionbody

 xor a

sectionbody:

 push af

 ;di ;uncomment if interrupts should be disabled here

 ;------code that may have disable interrupts or-------

 ;------need interrupts disabled goes here-------------

 pop af

 jp po,sectionend

 ei

sectionend:

Finding Network Members
CALCnet2.2 does not contain an explicit method of finding network members; the send and

receive routines were initially designed to be purely point-to-point. Programs that already

know the 5-byte address of the receiving calculator can simply fill in that address in a frame to

be sent, and the data will arrive at the receiver. However, for dynamic networks, it will be

necessary for a program to find other calculators in the network. In order to do so, each

calculator can be set to periodically broadcast its address to other calculators during a

discovery phase or even as a packet type during normal operation. Because CALCnet2.2 only

defines at most the bottom three layers of the OSI model (physical protocol, the data layer,

and the physical layer), it is up to each program to define the meaning of the contents of the

Doors CS 7 SDK
100

Chapter 7
CALCnet2.2

data section of frames. However, if a program puts a frame in its calculator's CALCnet send

buffer with a 5-byte receiver address of 000000, CALCnet will interpret that address as

indicating a broadcast frame, and will send that frame to every calculator on the network.

Note that broadcast transmission is somewhat less reliable than point-to-point transmission.

Whereas point-to-point guarantees that once the data disappears from the sender, the

receiver has successfully received and acknowledged the data, successful transmission of a

broadcast frame does not guarantee that every or even any calculator has received the data.

Repeated broadcast transmission of the broadcast packet should offer a reasonable chance

that each calculator will receive the packet, but the broadcast should not be continually

attempted to avoid monopolizing the network.

Sending
To send data via CALCnet2.2, a calculator program must first place the receiver ID, the frame

contents, and the size of the frame to be transmitted in the associated memory areas, in that

order (see the table above). The order is important because CALCnet notes whether a frame is

pending transmission by checking the most significant bit of the two-byte send buffer size

word. Because the z80 follows the little-endian storage model (the less significant byte of a

word is stored before the more significant byte), the most significant bit is bit 7 of the byte at

$8800 (see the table above if the derivation of this address is not clear). If that most significant

bit is reset, the CALCnet2.2 interrupt assumes that there is no frame pending transmission.

Once the bit is set, CALCnet may begin transmitting the frame at any point thereafter. Due to

the asynchronous nature of interrupts, the interrupt may fire at any time, so it is vital that the

high bit of the size word must only be set when the low size byte, receiver ID, and frame data

contents have already been written. To facilitate direct copying into the buffer from RAM or

ROM via ldir or an equivalent, the size may be copied with the MSB unset, then the MSB of

the size word's high byte should be set. The biggest danger of prematurely setting the bit and

thus prematurely indicating to the CALCnet interrupt that a frame is pending transmission is

that a partially-complete frame may be transmitted. Testing and verification shows that this

can happen frequently under real-world operation if the caveats dictated in this paragraph

are not followed.

Once a completed frame has been placed in the send buffer, the interrupt may take a number

of seconds to transmit the given frame in the range [ε,∞), in practice roughly [0.01,∞) seconds.

Transmission will take a finite amount of time if the receiving calculator is on the network and

the network is sufficiently non-noisy and has low enough end-to-end latency to ensure

proper transmission. A back-of-the-envelope calculation, taking the minimum granularity of

network time as the unrealistically strict value >10μs, dictates that a maximum transmission

distance based on the speed of light is 29979 meters, or 30 kilometers or 18 miles. Therefore,

any transmission over a wide-area network should be performed via an intermediary, such as

the planned globalCALCnet (gCn) system. If the receiving calculator is not on the network,

for example if the receiver's ID was incorrectly entered into the associated field in CALCnet

Doors CS 7 SDK
101

Chapter 7
CALCnet2.2

send buffer, then the transmission will take an infinite amount of time, as the remote

calculator will never acknowledge the packet. Transmitting calculators should provide a

means of removing a frame from the CALCnet send buffer if it has been pending for a long

time and has not been send successfully; it is up to the programmer to decide how to do this.

One recommended method follows in the code listing below:

xor a

halt ;halt to ensure that the store

ld (8800h),a ;happens immediately after an interrupt

A program will almost definitely need to know when it is safe to load a new frame into the

CALCnet send buffer. This can be done via the same method that the interrupt itself uses, ie,

loading the byte at (8800h), masking off the most significant bit, and loading a new frame if

and only if that bit is reset (zero). One note: the MSB is not considered part of the size, so that

a size of $8002 is considered a 2-byte frame, not a 32770-byte frame.

Receiving
Receiving a packet carries similar caveats and complexities as transmission. As with

transmission, there is a single bit to read and write to indicate the presence or absence of

pending data. As with transmission, there are three field in the relevant buffer: the two-byte

size of the data (for which a value of $8004 is considered a 4-byte frame, not a 32772-byte

frame), the five-byte ID of the sending calculator, and the 1- to 255-byte data section. As with

transmission, broadcast frames must be handled, although from the receiver side, a broadcast

frame is indistinguishable from a normal directed (point-to-point) frame. Finally, in symmetry

to the transmission routine, the user program must clear the present-data bit when it has read

the data out of the receive buffer in order to allow the CALCnet2.2 interrupt to accept another

frame.

As with transmission, the memory areas relevant to receiving data and their locations and

sizes are in the table above. The receive buffer will contain a size word indicating the size of

the data in the buffer; the data is only valid if the highest bit of the size word is set. CALCnet

uses the receive buffer to store frames currently in transit to this calculator before each

frame's checksum is verified, so only when the high bit of the size word is set should the data

be read. Once the receive buffer is used, the CALCnet2.2 will ignore further frames transmitted

to this calculator until the receive buffer is cleared, as indicated by the high bit of the size

word being reset, so to maintain a low-latency network, the receive buffer should be checked

and handled as often as possible.

More Information
Additional information about the CALCnet2.2 protocol can be found in the CaLCnet2.2

Whitepaper, available here:

Doors CS 7 SDK
102

Chapter 7
CALCnet2.2

http://www.cemetech.net/news.php? id=419

You may also request assistance on the Cemetech forum in the CALCnet section:

http://www.cemetech.net/forum/viewforum.php?f=67

Doors CS 7 SDK
103

Chapter 8
Shell Expansions

CHAPTER 8

SHELL EXPANSIONS

Shell Expansions, or SEs, are modules for Doors CS. They are similar to the concept of Ion

Modules, except that they are far more versatile. Shell Expansions can have one or more of

three sections: Boot, Mouse, and Unload. A shell expansion with a Boot section is called while

Doors CS is booting, before it counts programs and displays the desktop. Possible uses: load

interrupts, set up hardware, sort programs, etc etc. Mouse sections are the most versatile: not

only does Doors CS call them continuously while the mouse is active, they can actually

interject actions into Doors CS itself. They can force mouse movement, clicking, and

coordinate jumping via well-placed memory editing (not necessarily advocated). Finally,

unload sections are, obviously, called while Doors CS is quitting, after it has closed down the

GUI system but before it reverts to the TI-OS. Since a program can contain one or more of

these sections, it can be anywhere from 768 byte to 2,304 bytes; each section can only be up

to 768 bytes, since it must fit in SavesScreen.

Why Write a Shell Expansion?
As a programmer, why would you want to write your program as an SE rather than a full

program? Well, not only would you have the programming challenge of fitting your entire

program into 768, 1,536, or 2,304 bytes, you would have the advantage of interacting directly

with the Doors CS kernel. Startup programs could directly set flags and options within Doors

CS, or through some fancy programming, even prevent it from booting entirely (password

protection, anyone?). Because Doors CS is now an app, SEs have access to each and every

routine Doors CS has to offer to ASM programs, although it is not recommended that they

mess with the GUI system, in case Doors CS itself is taking advantage of undocumented GUI

API features. The mouse SEs are the crowning jewel of the SE system, for thety allow the

programmer full control over cursor movement, cursor clicking, and even the direct cursor

coordinates. Such power gives SEs the opportunity to completely change the way the

interface works for the user. A low-end example could be remapping the keys on the

keyboard, while a higher-end one might be a PS/2 or USB hardware driver.

Strengths and Weaknesses of SEs

Shell Expansions have several strengths and weaknesses that you need to take into account

when designing one. Shell Expansions can:

• Call any TI-OS ROM call

• Read data from any memory location

• Use any register (no need to shadow)

• Jump relative within the SE

Doors CS 7 SDK
104

Chapter 8
Shell Expansions

• Jump absolute within the SE (see below for restrictions)

However, there are some things that Shell Expansions cannot or should not do:

• Jump absolute outside of the SE (except to a ROM call)

• Exceed 768 bytes per section, or 2304 bytes total

• Write back to the program for later use

• Create or delete programs or data in such a way that the VAT will be disturbed

• Use SafeRAM4

Shell Expansions can jump absolutely within the SE, but instead of the usual format, absolute

jumps must be taken this way:

Alternatively, of course, you can use your assembler of choice’s .org, .rorg, or .reorg directive

to achieve the same end.

Technical Details

Persistent Storage

Each SE is allocated two bytes of RAM for mode storage. IT can be found at (ix) and (ix+1)

when the SE is loaded.

dModes: Return Values From SEs

These are the values that are returned from the Mouse section of any SE, and represent an

action that the SE would like Doors CS to perform.

• 0 = nothing

• 1 = leftclick

• 2 = rightclick

• 3 = up

• 4 = down

• 5 = left

• 6 = down

• 7-102 = set X-coord to d-7

SELoad:

prog commands

here

jp z,Label-SELoad+$8265

more commands

ret

Label:

Commands

ret

Doors CS 7 SDK
105

Chapter 8
Shell Expansions

• 103-166 = set Y-coord to d-103

In some betas between Doors CS 6.2 and Doors CS 6.7, notably 6.3, 6.4, 6.5, and 6.6, the

dModes listed above were nonfunctional.

Shell Expansion Header

Like other types of Doors CS programs and files, Shell Expansions must use a special SE

header.

.nolist ;defines, includes, and equates

#include "dcs7.inc" ;token interpretation

SEOffset equ $86ec

.list

 .org 0

 .db $BB,$6D ;ASM program header

 .db $AB,$C9 ;ignore program; ret

SEStart:

 .db $31,$87,$50 ;SE for DCS 5 and higher

 .dw SEBoot-SEStart ;or .dw 0 if there is no boot section

 .dw SEMouse-SEStart ;or .dw 0 if there is no mouse section

 .dw SEUnload-SEStart ;or .dw 0 if there is no unload section

SEBoot: ;if there is a boot section...

 ;...code...

 ret

SEMouse: ;if there is a mouse section...

 ;...code...

 ld d,0

 ret

SEUnload: ;if there is an unload section...

 ;...code...
 ret

Doors CS 7 SDK
106

Chapter 9
Routine Summary

CHAPTER 9

ROUTINE SUMMARY

Doors CS contains an extensive library of routines to be used by z80 Assembly programmers.

It also provides many BASIC libraries, as summarized in Chapter 3 of this document. The

available ASM routines fall into five major categories, all exhaustively detailed herein:

• Ion Compatibility Routines

• Doors CS Legacy Routines

• Doors CS Graphical User Interface (GUI) Routines

• CALCnet2.2 Routines

• Doors CS Associated Program (AP) Routines

• Mirage OS Compatibility Routines

Doors CS 7 SDK
107

Chapter 9
Routine Summary

Ion Compatibility Routines

iVersion

http://dcs.cemetech.net/index.php?title=IVersion

Description

Returns the version of the Ion libraries supported by Doors CS.

Technical Details

Doors CS emulates the libraries of Ion v1.6, containing 8 library routines.

Inputs
None

Outputs

a = Ion compatibility number (0)

d = Library compatibility number (0)

e = Number of supported routines (8)

h = Major Ion version emulated (1)

l = Minor Ion version emulated (6)

Destroyed

a, de, hl

iRandom

http://dcs.cemetech.net/index.php?title=IRandom

Description

Returns a random number within set bounds, such that the returned value a is, in relation to

the input upper bound b: 0<=a<b

Technical Details

Inputs

b = One larger than the highest random number this routine may return

Outputs

a = A random number between 0 and b-1, inclusive.

b = 0

Destroyed

All

Doors CS 7 SDK
108

Chapter 9
Routine Summary

iPutSprite

http://dcs.cemetech.net/index.php?title=IPutSprite

Description

XORs an 8-pixel-wide sprite to the graph buffer, aligned or unaligned. Does not clip. The

sprite can be any height 1-64 pixels.

Technical Details

Inputs

a = X-coordinate of upper-left of sprite

b = Sprite height, in pixels

l = Y-coordinate of upper-left of sprite

ix = Pointer to first byte of sprite

Outputs

Sprite XORed to graph buffer

Destroyed

All

iLargeSprite

http://dcs.cemetech.net/index.php?title=ILargeSprite

Description

Draws an aligned or unaligned sprite to the graph buffer with a width that is a multiple of 8

pixels, and any height. Does not perform clipping.

Technical Details

Inputs

a = X-coordinate of top-left of sprite

b = Sprite height

c = Sprite width (in bytes, so divide by 8)

l = Y-coordinate of top-left of sprite

ix = Pointer to first byte of sprite

Outputs

Draws the sprite to the graph buffer.

Destroyed

All

iFastCopy

http://dcs.cemetech.net/index.php?title=IFastCopy

Doors CS 7 SDK
109

Chapter 9
Routine Summary

Description

Copies the graph buffer to the LCD, very fast. Properly handles the emulator in the Nspire as

well as the delays necessary for the TI Presenter device.

Technical Details

This routine temporarily disables interrupts, but is careful to re-enable them when it

completes.

Inputs

None

Outputs

Graph buffer copied to LCD.

Destroyed

All

iDetect

http://dcs.cemetech.net/index.php?title=IDetect

Description

Finds a give file in the VAT, if it exists, searching based on the contents of the file. This routine

is designed to be reentrant, in the sense that you can call it multiple times with inputs based

on its outputs. For example, you can call it the first time with hl=(progptr), and then

subsequent times with hl = the de output of the previous run. It can also properly deal with

archived programs. This is particularly useful for finding game levels that always have a

specific header (or even DCS APs!).

Technical Details

Inputs

hl = Pointer to where to begin in the VAT, for example (progptr)

ix = Detection string, zero-terminated

Outputs

de = Address of place stopped in the VAT + 1

hl = Pointer to first byte of program data

z flag = set if no program was found (hl and de are invalid), and reset if a program was found

Destroyed

af, bc, de, hl

iDecompress

http://dcs.cemetech.net/index.php?title=IDecompress

Doors CS 7 SDK
110

Chapter 9
Routine Summary

Description

Decompresses bitpacked data.

Technical Details

Inputs

b = length of compressed data.

c = compression factor, either 1, 3, or 15.

hl = Pointer to first byte of compressed data.

de = Pointer to first byte of RAM to store decompressed data.

Outputs

Data decompressed from hl to de.

hl = Pointer to next byte of compressed data.

Destroyed

af, bc, de, hl

iGetPixel

http://dcs.cemetech.net/index.php?title=IGetPixel

Description

Gets the offset of a specified pixel into the graph buffer, as well as a bitmask isolating the

selected pixel in its group of eight.

Technical Details

Inputs

a = x-coordinate of pixel

e = y-coordinate of pixel

Outputs

a = pixel mask for specified pixel

hl = address of 8-pixel group containing this pixel in the graph buffer

Destroyed

All

Doors CS 7 SDK
111

Chapter 9
Routine Summary

Doors CS Legacy Routines

SmallWindow

http://dcs.cemetech.net/index.php?title=SmallWindow

Description

This routine previously drew a centered small window on the screen in Doors CS 5.0 and

lower. It is strongly recommended that this routine not be used, and instead the power of

the GUI API be harnessed.

SmallWindowErase

http://dcs.cemetech.net/index.php?title=SmallWindowErase

Description

This routine previously erased a SmallWindow-sized area centered on the LCD. It is very

strongly recommended that it not be used, and that the GUI API be used instead.

LargeWindow

http://dcs.cemetech.net/index.php?title=LargeWindow

Description

This routine previously drew a full-screen large window in Doors CS 5.0 and lower. It is

strongly recommended that this routine not be used, and instead the power of the GUI API

be harnessed.

LargeWindowErase

http://dcs.cemetech.net/index.php?title=LargeWindowErase

Description

This routine previously erased a LargeWindow, ie, cleared the screen. It is very strongly

recommended that the GUI API be used instead of this and related functions.

PlaySound

http://dcs.cemetech.net/index.php?title=PlaySound

Description

Plays a monophonic note on both channels of the serial I/O port, which can be heard with

either headphones or an AM radio tuned to static.

Technical Details

Doors CS 7 SDK
112

Chapter 9
Routine Summary

Inputs

hl = frequency of note (see notes.inc in the Doors CS 7.0 SDK)

de = duration of note (see notes.inc in the Doors CS 7.0 SDK)

Outputs

The specified note is played. Note that this routine is blocking: ie, it will not return to the caller

program until the end of the note.

Destroyed

All

VDispHL

http://dcs.cemetech.net/index.php?title=VDispHL

Description

Displays HL as an up to five-digit positive integer onscreen.

Technical Details

Inputs

hl = value to display

Outputs

Up to five digits of HL displayed onscreen starting at (pencol, penrow).

Destroyed

af, hl, Op1, Op2

Pause

http://dcs.cemetech.net/index.php?title=Pause

Description

Waits for a keypress, then returns the key code _getcsc-style in a.

Technical Details

Inputs

None

Outputs

Returns keycode in a. Zero is not a valid output from this function.

Destroyed

af

Doors CS 7 SDK
113

Chapter 9
Routine Summary

hDetect

http://dcs.cemetech.net/index.php?title=HDetect

Description

This routine checks if a coordinate pair is within a rectangular area, the top-left and bottom-

right of which are defined by two other coordinate pairs. It can be used for collision detection

or mouse click evaluation, among other things.

Technical Details

Inputs

hl = Location to check if within; (h,l)

bc = Upper left corner of area (b,c)

de = Lower right corner of area (d,e)

Outputs

Zero flag is set if hl is inside area, reset otherwise.

Destroyed

af, bc, de, hl

DispLongInt

http://dcs.cemetech.net/index.php?title=DispLongInt

Description

Displays an integer between 0 and 16,777,215 (inclusive) onscreen in small (graphscreen)

font.

Technical Details

Inputs

hl = pointer to the MSB of a three-byte big-endian integer

pencol/penrow = location to display number

Outputs

Up to 8 digits displayed onscreen

Destroyed

af, bc, de, hl, Op1

DPutMap

http://dcs.cemetech.net/index.php?title=DPutMap

Description

Display a character using the Doors CS font-display routines, completely separate from (and

Doors CS 7 SDK
114

Chapter 9
Routine Summary

somewhat faster than) the TI-OS VPutMap routine. In the future it will support multiple font

sets, although currently only fontset 0 (3x5 variable-width graphscreen font) is supported.

Technical Details

Inputs

a = character to display

e = fontset to use (only set 0 is currently valid)

Outputs

Character displayed onscreen at (pencol, penrow) and pencol advanced by the width of the

character including its rightmost blank column.

Destroyed

af, bc, de, hl

AP_GUIAVToTop

http://dcs.cemetech.net/index.php?title=AP_GUIAVToTop

Description

This internal Doors CS routine is used to move the "gui7" AppVar to the highest spot in user

memory (directly below the free RAM chunk) so that the size of the appvar can change

without needing to move any data above it. Although this is primarily used by Doors CS itself,

it should be called if you manually create any files from within your program. If you use

FileOpen, FileSave, or FileSaveAs, you need not call this routine, as Doors CS will handle it

automatically.

Technical Details

Inputs

None

Outputs

gui7 moved above any newly-created programs or files

Destroyed

All

RunProg

http://dcs.cemetech.net/index.php?title=RunProg

Description

Runs a program via Doors CS's RunProg subsystem. This call can handle any program that

Doors CS itself can handle, including AP programs and AP files, nostub BASIC and Hybrid

BASIC, Axe source code, nostub, DCS, Ion, and MirageOS ASM, plus any other filetype that

Doors CS 7 SDK
115

Chapter 9
Routine Summary

gets added to Doors CS after this document was written. Be very careful to take into account

all the things that the running program could do to this program's SafeRAM, modes, and

variables (see Outputs below).

Technical Details

Inputs

hl = Pointer to high (first) byte of VAT entry of given program or file.

Outputs

Runs the program. Be aware this may trash a variety of variables and settings, create new

variables and settings, and switch many calculator modes, depending on the type of program

run. Also note that Hybrid BASIC programs and an ASM program may completely destroy any

SafeRAM in use, so be sure to either back up necessary variables

Destroyed

All

Doors CS 7 SDK
116

Chapter 9
Routine Summary

Doors CS Graphical User Interface (GUI) Routines

OpenGUIStack

http://dcs.cemetech.net/index.php?title=OpenGUIStack

Description

Creates and initializes the Doors CS GUI system. Sets up all appvars and variables necessary.

Repeatedly calling this function will have no negative affects, but the c register will be

modified to indicate whether the GUI stack had already been opened previously. The

counterpart to this function is the CloseGUIStack routine. Note that the GUI uses several

SafeRAM areas that are normally reserved for ASM programs, so your code should be written

accordingly.

Technical Details

Inputs

a = $c7 to use special VAT-swapping speed optimization. If not $c7, the optimization will be

omitted. In general, it is safe to avoid explicitly setting the accumulator. It is not

recommended that programs use the $C7 mode, as it will offset any pointers into the VAT by

11 bytes.

Outputs

c = 0 if the stack was closed, 1 if the stack was open.

hl = first data byte of the stack appvar

de = first byte of the VAT data

Shortcut

OpenGUIStack()

Destroyed

a, bc, de, hl, Op1

PushGUIStack

http://dcs.cemetech.net/index.php?title=PushGUIStack

Description

Pushes an item onto the GUI stack. The first element on the stack must be either GUIRNull,

GUIRLargeWin, or GUIRSmallWin. Every time one of those three items appears on the stack, it

indicates the start of a new entry. This function takes three arguments. Note that the

OpenGUIStack routine should be called before using this function. Also note that if there is

insufficient RAM to fit the GUI elements being pushed, undesirable results may be obtained.

Doors CS will check for and catch situations in which there is less memory than would be

required for a push operation, but the program initiating the push(es) should be aware that it

Doors CS 7 SDK
117

Chapter 9
Routine Summary

may lose control in such circumstance. Avoid pushing excessive information onto the GUI

Stack without checking that there is sufficient memory available to do so. Also be aware that a

very small amount of data is added to the GUI Stack within the GUIMouse routine to

incorporate clickable hotspots.

Technical Details

Inputs

a = Item type. Examples: GUIRSmallWin, GUIRRadio, GUIRPassIn

hl = Pointer to stack entry data.

de = Length of data in bytes.

Outputs

Adds the specified entry to the GUI stack. This routine does not render the GUI, however.

hl = first byte of stack entry (after 2 bytes of size and 1 byte of type)

Shortcut

PushGUIStack([a],[hl],[de])

Destroyed

All

PushGUIStacks

http://dcs.cemetech.net/index.php?title=PushGUIStacks

Description

Pushes a group of items onto the GUI stack.

Technical Details

The data chunk at hl consists of several entries to insert into the GUI stack, each formatted as:

.dw Size

.db Type

.db Data

Please note that the Size is is the size of the data plus the type byte plus the size word, or

sizeof(data)+3. After the last item, the two-byte sequence $FF,$FF must be appended to

signal the end of the data section.

Inputs

hl = Pointer to first byte of stack data.

Outputs

Adds the specified entries to the GUI stack. This routine does not render the GUI, however.

Doors CS 7 SDK
118

Chapter 9
Routine Summary

Shortcut

PushGUIStacks([hl])

Destroyed

All

GUIFindFirst

http://dcs.cemetech.net/index.php?title=GUIFindFirst

Description

Finds the first non-groupmaster element in the 'top group' of the GUI Stack. In other words, it

actually returns the second item in the group, after the GUIRSmallWin, GUIRLargeWin, or

GUIRnull item. Returns an error if there is no open GUI stack. This routine is useful for

extracting information from input forms after the user quits a form or other GUI group.

Technical Details

Inputs

None

Outputs

c = 0 if the stack was open and this routine suceeded; 1 if the stack was closed, therefore no

items to see.

hl = the first byte of the size of the first element in the top group

de = the byte after the last byte of the top group.

It is recommended that you push hl and de if you plan to use GUIFindNext; that routine

requires the data of these two outputs as inputs.

Shortcut

GUIFindFirst()

Destroyed

a, bc, de, hl, Op1

GUIFindNext

http://dcs.cemetech.net/index.php?title=GUIFindNext

Description

Finds the next element in the 'top group' of the GUI Stack. It assumes you have already called

GUIFindFirst or have in some way verified that the stack is actually open (via OpenGUIStack)

and elements are on it (via PushGUIStack). This routine is useful for extracting information

from input forms after the user quits a form or other GUI group.

Technical Details

Doors CS 7 SDK
119

Chapter 9
Routine Summary

Inputs

hl = the first byte of the entry the program is currently at.

de = the first byte after the last byte of the top group.

You can use the hl and de values that were returned by GUIFindFirst or a previous call of

GUIFindNext

Outputs

c = 0 if there is a next item and de and hl are valid; 1 if we were already at the end and hl / de

are invalid.

hl = the first byte of the size of the next element in the top group

de = the byte after the last byte of the top group.

It is recommended that you push hl and de if you plan to use GUIFindNext again; that routine

requires the data of these two outputs as inputs.

Shortcut

GUIFindNext([hl],[de]) - To specify non-register values

GUIFindNext() - To use already-set contents of hl and de

Destroyed

a, bc, de, hl, Op1

GUIFindThis

http://dcs.cemetech.net/index.php?title=GUIFindThis

Description

Finds the ath non-groupmaster element in the 'top group' of the GUI Stack. In other words, it

actually returns the second or later item in the group, after the GUIRSmallWin, GUIRLargeWin,

or GUIRnull item. Unlike GUIFindFirst and GUIFindNext, assumes there is an open GUI stack.

This routine is useful for extracting information from input forms after the user quits a form or

other GUI group.

Technical Details

Inputs

a = number of items to skip before returning an item

Outputs

hl = the first byte of the size of the first element in the top group

de = the byte after the last byte of the top group.

bc = size of the current element

It is recommended that you push hl and de if you plan to use GUIFindNext; that routine

requires the data of these two outputs as inputs.

Doors CS 7 SDK
120

Chapter 9
Routine Summary

Shortcut

GUIFindThis([a])

Destroyed

a, bc, de, hl, Op1

RenderGUI

http://dcs.cemetech.net/index.php?title=RenderGUI

Description

This routine renders the GUI to the graph buffer, then copies the graph buffer to the screen. It

renders every item on the stack, layering multiple entries if necessary.

Technical Details

Inputs

None

Outputs

Draws the GUI to the LCD

Shortcut

RenderGUI()

GUIRender()

Destroyed

All

GUIMouse

http://dcs.cemetech.net/index.php?title=GUIMouse

Description

Renders the contents of the GUIStack and begins input functions.

Technical Details

Please note three issues when calling GUIMouse:

1. RenderGUI is automatically called from GUIMouse. If you're going to be using GUIMouse,

don't bother with RenderGUI first.

2. You need to call GUIMouse, but when control is returned to your program, the stack will

be in a condition as if you jped to GUIMouse. Keep that in mind!!

3. You must call ResetAppPage as the very first instruction anywhere in your program to

which GUIMouse might jump.

Doors CS 7 SDK
121

Chapter 9
Routine Summary

Inputs

hl = Location of hook to call once per cycle. You must set this to $0000 if not using one. Hook

Note: the current mouse location as (x,y) will be in (a,l) when the hook routine triggers. You

can also get/set the location by checking in MouseX and MouseY. To force the GUIMouse to

return control to your program from inside the hook, set the coordinates to an object that

would cause it to exit anyway, and add an extra pop to the routine. if you have no suitable gui

object you can use an offscreen GUIRHotspot, and set the mouse location to that.

if the hook begins with .db $3f it will disable the debouncing routines, the click checking, and

use a custom acceleration mode. This option is useful if you need to be able to press keys

while moving the mouse.

Outputs

May update data inside elements on the GUI Stack. Will end up jumping to the location

defined by hotspots, etc.

Shortcut

GUIMouse() - Use this if there's no hook

GUIMouse([hl]) - Pass a label name of the hook

Destroyed

All plus GUI Memory Areas

PopGUIStack

http://dcs.cemetech.net/index.php?title=PopGUIStack

Description

Removes the top item from the GUIStack. If the GUI stack was empty, nothing happens.

Technical Details

Inputs

None

Outputs

bc = number of bytes removed. Can be used for ptr updates.

hl = where it was removed from.

Shortcut

PopGUIStack()

Destroyed

af, bc, de, hl, Op1

Doors CS 7 SDK
122

Chapter 9
Routine Summary

PopGUIStacks

http://dcs.cemetech.net/index.php?title=PopGUIStacks

Description

Pop one or more items from the top of the GUIStack. If the programmer requests more items

be popped than currently exist on the stack, then the stack will be emptied and then the

routine will return.

Technical Details

Inputs

b = Number of items to pop from the stack

Outputs

b = 0

Shortcut

PopGUIStacks([b]) - Pass an integer indicating how many to pop

Destroyed

All but c

CloseGUIStack

http://dcs.cemetech.net/index.php?title=CloseGUIStack

Description

Closes the Doors CS GUI system and removes the gui6 appvar from memory. No ill effects can

be accidentally incurred by calling this routine multiple times, although the return value of

the c register is used to indicate whether the stack had already been closed. This routine is the

counterpart of the OpenGUIStack function. Warning: this will delete any information currently

in the GUI stack. Copy any important data into files or SafeRAM before closing the stack.

Technical Details

Inputs

None

Outputs

c = 0 if the stack was open, now close; 1 if the stack was already closed.

hl = size of stack before close if c=0.

de = where stack was if c=0.

(Previous two register values useful for ptr updating)

Shortcut

CloseGUIStack()

Doors CS 7 SDK
123

Chapter 9
Routine Summary

Destroyed

a, bc, de, hl, Op1

ResetAppPage

http://dcs.cemetech.net/index.php?title=ResetAppPage

Description

Resets Doors CS's active page to page 0.

Technical Details

This routine must be called as the first command of a segment of code triggered by

GUIMouse.

Inputs

none

Outputs

none

Shortcut

ResetAppPage()

MouseRecover() - Alias to ResetAppPage()

Destroyed

hl, de, bc

Doors CS 7 SDK
124

Chapter 9
Routine Summary

CALCnet2,2 Routines

Cn2_Setup

http://dcs.cemetech.net/index.php?title=Cn2_Setup

Description

Initialize the CALCnet system, including starting the interrupt and setting up the memory

areas and buffers to be used by CALCnet. CALCnet is a linking/networking library for linking

between two and 1610 calculators or other two-wire serial devices together in a decentralized

network.

Technical Details

Inputs

None

Outputs

The CALCnet2.2 interrupt is installed. Be sure to carefully read the CALCnet2.2 chapter to

understand the memory areas that will be used and the routines that must be used and

avoided.

Destroyed

All

Cn2_Setdown

http://dcs.cemetech.net/index.php?title=Cn2_Setdown

Description

Disable the CALCnet system, including shutting down the interrupt and freeing the memory

areas used by CALCnet for the interrupt and its buffer.

Technical Details

Inputs

None

Outputs

The CALCnet2.2 interrupt is disabled and its memory areas are freed.

Destroyed

All

Cn2_ClearRecBuf

http://dcs.cemetech.net/index.php?title=Cn2_ClearRecBuf

Doors CS 7 SDK
125

Chapter 9
Routine Summary

Description

Clears the receive buffer, a total of 256+5+2=263 bytes. In practice, the receive buffer may be

conceptually cleared as far as the interrupt is concerned simply by resetting the MSB of the

size field in the buffer, after which you may receive a new frame.

Technical Details

Inputs

None

Outputs

Receive buffer is cleared. See caveat in Description above.

Destroyed

All

Cn2_ClearSendBuf

http://dcs.cemetech.net/index.php?title=Cn2_ClearSendBuf

Description

Clears the send buffer, a total of 256+5+2=263 bytes. In practice, the send buffer may be

conceptually cleared as far as the interrupt is concerned simply by resetting the MSB of the

size field in the buffer, after which you may load in a new frame.

Technical Details

Inputs
None

Outputs

Send buffer is cleared. See caveat in Description above.

Destroyed

All

Doors CS 7 SDK
126

Chapter 9
Routine Summary

Doors CS AP Routines

FileOpen

http://dcs.cemetech.net/index.php?title=FileOpen

Description

Opens a GUI to open files. Fully supports the folder system etc.

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before opening a new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

back above any newly-opened files. Doors CS will handle closing any open AP files when your

program quits. Note that unlike Doors CS 6.4 beta and lower, Doors CS 6.5 and higher may

return pointers to an AP file even if the FileOpen was canceled, ie, the pointers to an already-

open file. Nevertheless, it is mandatory that any time FileOpen is called, any open AP file(s)

is/are ready to be written back and closed.

Inputs

a = zero to only show files of the type(s) defined in this AP's header, or nonzero to show all

oncalc files

Outputs

hl = 0 if no file was returned, or the first byte of data if a file was returned

de = pointer to the size word of the data for updating. Please note: the size at the size word is

not the same as the size word in bc. bc is 8 bytes smaller than (de) due to the AP header

($BB,$6D,$C9,$31,$80,type,type,type)

bc = size of the pure data section of the file.

If necessary, you should also check hl-3 through hl-1 (3 bytes) to see if it's a valid type for this

program.

Destroyed

a, bc, de, hl, Op1, iMathPtrs, GUI Memory Areas

FileSave

http://dcs.cemetech.net/index.php?title=FileSave

Description

Create a new AP file with a given name, type, size, and data. Operates with no GUI.

Doors CS 7 SDK
127

Chapter 9
Routine Summary

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before creating the new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

back above any newly-created file. Doors CS will handle closing any open AP files when your

program quits.

Inputs

hl = pointer to data to put in new file

bc = size of pure data section (the program created will be larger than this because of the AP

header)

de = pointer to 3-byte type sequence

op1 contains name, eg. .db 06,"NAME",0

Outputs

zero flag = Set if successful. If not zero, then the function FAILED, and the existing open file

might have been closed! Be aware of this.

hl = 0 if no file was returned, or the first byte of data if a file was returned

de = pointer to the size word of the data for updating. Please note: the size at the size word is

not the same as the size word in bc. bc is 8 bytes smaller than (de) due to the AP header

($BB,$6D,$C9,$31,$80,type,type,type)

bc = size of the pure data section of the file.

Destroyed

a, bc, de, hl, Op1, iMathPtrs, GUI Memory Areas

FileSaveAs

http://dcs.cemetech.net/index.php?title=FileSaveAs

Description

Create a new AP file with a given type, size, and data. Operates with a GUI, used to ask the

user for a name for the file, and optionally a folder in which to store the new file.

Technical Details

As of Doors CS 6.4 beta, it uses the new RunProg Chaining system to operate. It puts away any

open program before creating the new program, so be aware that pointers in memory might

have moved around. It is strongly recommended to re-chkfindsym any RAM (and ROM)

variables after calling this function. Note that this function will also move the gui7 AppVar

back above any newly-created file. Doors CS will handle closing any open AP files when your

program quits.

Doors CS 7 SDK
128

Chapter 9
Routine Summary

Inputs

a = zero to only show files of the type(s) defined in this AP's header, or nonzero to show all

oncalc files hl = pointer to data to put in new file

bc = size of pure data section (the program created will be larger than this because of the AP

header)

de = pointer to 3-byte type sequence

Note that unlike FileSave, Op1 is not used as an input (although it is destroyed in the course

of fileSaveAs execution)

Outputs

zero flag = Set if successful. If not zero, then the function FAILED, and the existing open file

might have been closed! Be aware of this.

hl = 0 if no file was returned, or the first byte of data if a file was returned

de = pointer to the size word of the data for updating. Please note: the size at the size word is

not the same as the size word in bc. bc is 8 bytes smaller than (de) due to the AP header

($BB,$6D,$C9,$31,$80,type,type,type)

bc = size of the pure data section of the file.

Destroyed

a, bc, de, hl, Op1, iMathPtrs, GUI Memory Areas

Doors CS 7 SDK
129

Chapter 9
Routine Summary

MirageOS Routines
More in-depth documentation on these routines can be found at

http://dcs.cemetech.net/index.php/Included_Routines. If you cannot find up-to-date

information there, please see the MirageOS SDK for the full listing of inputs and outputs for

these routines (http://www.detachedsolutions.com/mirageos/develop/). A summary of the

available routines in Doors CS ported from MirageOS can be found below. Note that if a

routine is not listed here, it is not available, even if it’s in the MirageOS SDK.

• directin - scans one group of the keypad for pressed keys via direct input.

• sendbytetios - sends one byte via TI-OS linking routines.

• getbytetios - receives one byte via TI-OS linking routines.

• version - retrieves MirageOS library compatibility information.

• setvputs - sets (penrow) and (pencol) and displays a string in variable-width

graphscreen font.

• setpixel - sets a specific pixel in the graph buffer to dark.

• fastcopys - copies the graph buffer to the LCD, preserving all registers.

• delayb - halts for a specified amount of time.

• multhe - multiplies h*e.

• multhl - multiplies h*l.

• quittoshell - quits directly to Doors CS, regardless of stack level.

• fastline - draws a line to the graph buffer, fast.

• pixelonhl - similar to setpixel

• pixeloff - turns a specified pixel to white.

• pixelxor - xor's a specified pixel.

• pixeltest - returns the state of a specified pixel.

• pixeloffhl - similar to pixeloff.

• pixelxorhl - similar to pixelxor.

• pixeltesthl - similar to pixeltest.

• fastlineb - draws a black line to the graph buffer.

• fastlinew - draws a white line to the graph buffer.

• fastlinex - XORs a line onto the graph buffer.

• pointonc - like pixelon, but with clipping.

• pointoffc - like pixeloff, but with clipping.

• pointxorc - like pixelxor, but with clipping.

• centertext - draws a centered string to the graph buffer in variable-width font.

• cphlbc - compares hl and bc.

• putsprite8 - like iPutSprite width height=8.

• fastcopyb - similar to iFastCopy, but using hl instead of gbuf as the memory location.

Doors CS 7 SDK
130

Chapter 9
Routine Summary

• vputsc - like vputs, but copying to both the LCD and the graph buffer.

• scrolld7 - scroll the graph buffer by 7 lines.

• vnewline - like CRLF, calling scrolld7 if necessary.

• rand127 - return a random number between 0 and 127, inclusive.

• disprle - decompress RLE-compressed image.

• cphlde - compare hl and de.

• fastlined - draws a fast line with a dotted line style.

• disprlel - similar to disprle, but with a specified size.

• compstrs - compare two zero-terminated strings.

• nextstr - increment through a zero-terminated string to the following string.

• fastrectangle - draws an unfilled rectangle to the graph buffer.

• gettext - like vputs, but gets input.

• gettextv - same as gettext with additional options.

• vputa - displays the value of the accumulator in base 10.

• compstrsn - compares two strings for a specified number of characters..

• largespritehl - similar to iLargeSprite.

• setupint - sets up a simplified MirageOS interrupt tasker.

• filledrectangle – draws a rectangle with a solid or inverted fill.

Doors CS 7 SDK
131

Chapter 10
Further Reading

CHAPTER 10

FURTHER READING

The most important place to get information about Doors CS is the Doors CS Wiki,

http://dcs.cemetech.net/. The second most important place is the Cemetech website and the

Cemetech forums, where news about new versions, features, and programs is posted, and

where users and programmers alike can ask questions about the shell. The front page is

http://www.cemetech.net, and the Doors CS subforum can be found at

http://www.cemetech.net/forum/viewforum.php?f=9. General information about

programming in z80 ASM and in TI-BASIC can be found at http://www.ticalc.org, and

programmers are encouraged to ask programming questions and request advice on tutorials,

project ideas, etc on the Cemetech forum.

As a last resort, you may hunt down my email address and drop me a line, but be advised that

I will answer questions much faster when they’re posted on the Cemetech forum, as I keep my

eye on that much more frequently than I do my email.

Thanks for browsing this document, good luck with your TI programming endeavors, and I

hope I get to hear from you on the Cemetech forum (http://www.cemetech.net/forum).

Cheers!

Doors CS 7 SDK
132

Appendix A
License

APPENDIX A

LICENSE

Doors CS is updated regularly to fix any reported bugs and compatibility issues, optimize size,

and add new features. You can find all Doors CS news at the Cemetech homepage,

http://www.Cemetech.tk. If you sign up as a Cemetech user, you can view the project page

with beta editions and more at http://dcs.cemetech.net. You can download this and all future

editions of Doors CS at the Cemetech file archives or at the link above. If you have any

comments, questions, complaints, or compliments on Doors CS, feel free to send me an email

at kerm_martian@yahoo.com with the phrase “Doors CS” in the subject line.

Doors CS is intellectually copyrighted by Christopher Mitchell, programming alias Kerm

Martian. “Doors CS”, “The Revolutionary New Shell for Graphing Calculators,” “Cemetech,” and

“Leading the Way to the Future” are copyright ©1998-2013 Christopher Mitchell. Doors CS

may not be reverse engineered or modified without express written consent of the author.

Doors CS may not be sold or installed for any monetary or other reimbursement. Doors CS

may not be repackaged or redistributed without the permission of the author.

The full Doors CS license is reproduced below:

Doors CS 6 End-User License

A.1| Preamble

This license applies to any and all possible pieces of human- and machine-readable computer
code, prose, graphics, and other materials in the assembly, basic, and other languages,
including associated documentation, ideas, and intellectual property created, designed,
and/or written by Christopher Mitchell, programming alias KERM MARTIAN. Any and all use
and reuse of this code for a purpose other than an official release of a compiled version by
"Kerm Martian" himself is governed by this agreement. Any attempt to use or reuse this
source code or compiled code for release under "Kerm Martian" or another name must be
explicitly approved by "Kerm Martian", except if such use or reuse has been previously
approved by "Kerm Martian".

By opening, downloading, or viewing this document or the source code of DOORS
CALCULATOR SHELL ("Doors CS"), THE USER ("you") implicitly agree to the terms of this license
agreement (LICENSE or AGREEMENT). If you do not accept the terms of this agreement, you
are to immediately delete any source code you have viewed, downloaded, or cached. This
license does not covered the compiled Application version of Doors CS, which is released with
its own license agreement.

All legal rights accorded copyrighted or protected works not expressly covered in this
document are reserved by "Kerm Martian". Note that while Doors CS is partially open-source,
the original code remains copyright "Kerm Martian". However, as stated below, portions of

Doors CS 7 SDK
133

Appendix A
License

the code may be reused as long as all strictures both implicitly and expressly stated in this
license are followed.

A.2| Availability

The Doors CS 6 source code shall be openly available to the general public after May 31, 2006.
This availability cannot be applied to past or future Doors CS releases, although the author,
"Kerm Martian", may choose to make such source code available at his own discretion. A
release date, if any, for the Doors CS 7 source code has not yet been set. Appropriate
notifications will be made should such a date be selected. Interested community members
may request special access to the source code in whole or in part, which Kerm Martian
reserves the right to approve or deny. Past access to any source code or subset thereof does
in no way guarantee future access. When and if released, the source code may be found on
Cemetech, http://www.cemetech.net, or http://doorscs.cemetech.net. If the code is not
found there, the author may be contacted to obtain the full source code. At any point, "Kerm
Martian" may choose to return Doors CS to closed source status, in which state the code
would not be released to any programmer, user, or other individual, corporation, or legal
body whatsoever. Such a change would be accompanied by an updated license and at least
1-week notification on http://www.cemetech.net. This change would retroactively forbid
derivative works based in whole or part on original code taken from Doors CS; in the event of
such a move, an author could submit a written request to retain rights to the derivative code.

A.3| Scope

This license covers the electronically-encoded, hardcopy, and any other instance of the source
and assembled code for the graphing calculator shell Doors CS, its derivatives, and its
modules. This license does NOT cover any program written to work with Doors CS by either
"Kerm Martian" or any other user, group, or organization. Certain portions of the code,
including routines in whole or in part, have been used with the permission of the original
third-party author(s). They may or may not be covered by original licenses. A user wishing to
use that code should contact those authors for permission to use their code, or "Kerm
Martian" may be able to contact the author on the user's behalf.

A.4| Usage

Under abolutely no circumstances whatsoever may the source code of Doors CS may be
recompiled in whole or in part and released by an individual, group, or third party other than
"Kerm Martian" without express, expicit written permission from "Kerm Martian". Sections of
code may be used in other published projects only with the written permission of "Kerm
Martian". The source code of Doors CS may be freely examined and reverse-engineered only
for constructive purposes. It is explicitly illegal and contrary to this agreement to use any of
the information covered directly or indirectly by this agreement for malicious or harmful
purposes.

Optimizations, corrections, and bugfixes to this code may be submitted to the author, "Kerm
Martian". Such items may be accepted or denies as additions or changes to the official source
code maintained by "Kerm Martian" for official releases at "Kerm Martian"'s discretion. As a
general rule, good, constructive suggestions will be almost definitely accepted.

Doors CS 7 SDK
134

Appendix A
License

A.5| Liability

Cemetech and “Kerm Martian” hereby disclaim any and all responsibility for damage and/or
injury to persons or property, both tangible and intangible, as a direct or indirect result of
using Doors CS 7. Among the implicit areas of non-liability deemed necessary for explicit
statement here are “RAM Cleared” events, rendering of a mobile unit nonfunctional
(“bricking”), and unwanted additional, removal, or modification of data on a device due
directly or indirectly to Doors CS 7, though all reasonable care has been taken to remove
instability from this final release.

A.6| Updates

Frequent changes are made to the Doors CS source code as development progresses. These
changes are mirrored in the released source code, but there might be a slight delay due to
scheduling or "Kerm Martian" forgetting to upload the source on any given week. New source
code releases are generally made after major changes or the addition of new features, and do
not occur after minor bugfixes. If you need an up-to-date version, contact "Kerm Martian".

