Getting started: Variables and printf

Before you learn to run, you have to learn how to walk. The next few chapters are going to be the most important if you want to have any success as a programmer. You

need a strong background to be able to master other skills like grafx. I will do my best to condense what takes years to teach at universities!

I am obviously going to skip a lot of what you would learn at an university. Don't think of it as skipping, think of it as filtering. I wont give you all the "crap and filler" that

applies to general comptuer science. You want to make games, therefore we will focus on games!

As you read this you should do the instructions say. This means you shouldn't skip an exercise because it seems too easy. When you see some sample source code, try

it. Thats what its there for. Some code is just meant to prove a point and wont work by itself because its only one line or so. This is called psuedo code, its not something

you can use directly in a compiler, but its close. After you have written one program you will be able to tell what will run and what wont.

Setting up your first program

Create a directory such as \program\chapt0\1\ and switch to it. To load the IDE type rhide and you'll be in the ide ready to create your first program. From the project

menu choose open project. Type in a name such as first.gpr. Next click on add at the bottom of the screen and type hello.c. It is important to make it a .c file (C) and

not a .cc file (C++) because you'll get an error saying you are missing the C++ part of the compiler when you try to compile it. Click ok and you'll see it is added to the

project. Click cancel to get back. Double click hello.c and you are ready to start editing it!

If you don't have rhide you can simply type edit hello.c or use Notepad to create your .c file.

Your first program

Enter the following code into your editor.

If you are using a text mode editor such as RHIDE you probably want to change the size of the indents. In RHIDE from the Options menu choose Enviroment and then

Preferences, 3 is a good tabsize.

When you enter this program, remember that C is case sensitive. Printf and printf are different.

#include <stdio.h>

int main(void){

 printf("Hello World\n");

 return 0;

}

Now comes the moment of truth of whether you set your compiler up correctly. Simply choose run from the run menu.

If you didn't install RHIDE, you get to learn how things really work. Type gcc -c hello.c. This will compile your c code into object code. Object code is the translation of

your C code into machine code. The next step is to link your object code into a real exe. To link it type gcc -o hello.exe hello.o. This will link in all the code to set up a

32bit exe and other things. If you see your simple program grow to 80K thats alright (for now). If you don't need the object file (we wont need those YET) you can type gcc

-Wall -o hello.exe hello.c to make an exe from one source file. The -Wall is optional, it gives you all the warning messages, which can be very handy when trying to track

down bugs. To see all the options type info gcc invoking.

When you run hello.exe you should see Hello World.

With RHIDE you probably wont see anything. This is because it runs so fast and as soon as it finishes it switches back to the IDE screen. If you choose UserScreen from

the Windows menu you will see what you just printed.

Fire up a dos prompt and go to the directory that your project is in and run the .exe file you just created. You should see the words Hello World and a blank line. If not you

have done something wrong and need to go figure out what that was.

I guess that was cool, but what did I just do?

You probably want to know what you just did? You can obviously figure out how to make it say This program is useless instead of Hello World, but you probably want to

know what are the rest of the lines for.

#include <stdio.h>

is a compiler directive. This line has nothing to do with what your program does, it is strictly for the compiler. By including stdio.h we include the STandardD Input Output

library. We will include it in almost all our programs. The # tells the compiler that this line is a compiler directive. include tells it to include a file (since this is the first chapter

I'll go ridiculously slow and explain things like what include does even though it is blatantly obvoius that include will include a file!) and <stdio.h> is the name of that file.

int main(void){

is the name of a function. All programs must have a main function, it is where the program starts. int is short for integer. The int before main means when this function is

done, it will return an integer. (void) is the parameters which the function takes. To pass parameters to the main function you type something after the program name.

pkunzip quake.zip passes quake as a parameter to pkunzip. The { tells the compiler where the code for the function actually starts. Since it is void our program wont

expect any input.

printf("Hello World\n");

is pretty self explanitory. It prints Hello World on the screen. The \n you will notice doesn't show up on the screen. \n is translated into a new line code. What if you want to

put In C \n means new line on screen? Just use a double \ to print a \ character. The code to do that would be printf("In C \\n means new line");

return 0;

is what the function returns. In this case it means our program will return 0 to the operating system. When the operating system gets recives a 0 after the program has run it

knows that nothing went wrong. If there is an error in your program, such as not enough memory, you should return a number different than zero to the operating system to

indicate that you abnormally ended the program. A lot of compilers don't require you to return a zero, but it is part of the ANSI standard so its good practice to return a

value.

For every open bracket you use, you need to use one to close it. Thats what the final } is for. You will also notice that every line has a ; at the end. This tells the compiler

that it is the end of the line. If you leave a ;out your program will not compile.

You now know how to program C! Well sort of, all you can do is write messages, but you have to start somewhere!

Variables

Variables are the most important tool a programmer has. They are used to keep track of things like points in a games, lives left, or height of the player on the screen. There

are eleven built in variable types. They are char, int, short, long, float, double, and long double. By default they are signed, which means they can hold both positve

and negative numbers. The other four variable types are just repeats of those (execpt for float, double, and long double), but can not hold any negative numbers. They

are creativly called unsigned variables. The advantages of unsigned numbers is they can hold numbers of twice the magnatude. For example an unsigned char can hold

numbers 0 to 255 (for a total of 256 different values) but a signed char can hold numbers -128 to 127 (for a total of 256 different values). We won't use int because it is not

very good for portable code. Different compilers,or even the same compiler in different situations, treat int as either a 16bit number (short) (65536 different values) or a 32bit

number (long) (4,294,967,295 different values).

It is worth the extra effort to make sure you use shorts and longs rather than ints incase you recompile your code somewhere else.You can see that you would have a

problem if you planned to make a player watch an intro to your game a million times before he/she could play and you kept track of the number of times the player has seen

the intro with an int. If you recompiled your code with a compiler which treated ints as 16bit instead of 32bit the player computer would never be able to count to one million

because when the computer tries to count from 65535 to 65536 the number would overflow from 65535 to 0 instead! You would never get high enough and your game would

be stuck in an infinate loop. Even though you will probably only use one compiler, force yourself into the habit of not using ints.

For those without much math education yet, an integer is any whole number. If you wanted a running game where the player had to run 1.98 kilometres but used ints to

keep track of the distance, the 1.98 would get truncated (not rounded, like real numbers are) to 1 which would make the course much shorter! If you need decimal places

use a floating point number.

Variables can be given any name you want such as x, Points, or Time_Left. Variables are case sensitive in C. Therefore Points, points, POINTS, PoiNTS, and pOInts are all

different variables. The first character of a variable name must be a letter (a-z or A-Z). After that you can add any number of letters, numbers, or underscores (_ is an

underscore) as you feel is appropriate.

Here is what variables can hold:

 char -128 to +127 8bit

 unsigned char 0 to +255 8bit

 short -32768 to +32767 16bit

 unsigned short 0 to +65535 16bit

 long -2 147 483 648 to +2 147 483 647 32bit

 unsigned long 0 to +4 294 967 295 32bit

 int -32768 to +32767 16bit

 or

 int -2 147 483 648 to +2 147 483 647 32bit

 unsigned int 0 to +65535 16bit

 or

 unsigned int 0 to +4 294 967 295 32bit

 float ??? 32bit

 double ??? 64bit

 long double ??? 80bit

 or

 long double ??? 64bit

long double and int are compiler dependant so try to avoid using them.

The last thing about variables. They must be declared either as parameters, which we'll get to later, or before your code in the function. You can not just add a variable in

the middle of your function when you need it.

I am sure you want to see an example of this right about now to explain everything you just read. Lets pretend we needed to figure out the average of 9 and 2, but our brains

didn't work and we couldn't find a calculator.

#include <stdio.h> /* you know the meaning of this */

int main(){ /* and this */

 short average; /* creates a variable named average */

 average=5+9/2; /* assigns a value to average */

 printf("5+9/2=%i\n", average); /* prints the value of average on the screen */

 return 0; /* returns zero to the operating system */

}

This is the first C shortcut you will learn, instead of typing (void) for functions that won't be taking in any parameters you can just type () such as main() rather than

main(void).

Try to guess what everything does and then compile it.

When you compile this you will get 9 as your answer (the / means divide, like a fraction). As you can see the compiler knows BEDMAS (for those who haven't learned

BEDMAS, it's a way to remember the proper order to do math in. You do start at the left and work right doing brackets, then starting again at the left and do exponents,

then start again at the left and do division or multiplication, then finally work through again doing addition or substaction.) Therefore 5+9/2 is the same as 5+(9/2), not

(5+9)/2 which is how we would compute the average.

To find the real average of 5+9 we have to add it before we divide by 2. The proper line should be average=(5+9)/2;

The %i in the printf statment is simular to the \n. It tells the compiler to replace that with an integer which will be given after the ",. There can be more than one integer such

as printf("%i*%i=%i",3,7,3*7).

That was very short, but it should be enough for you to know what a variable is. As you can see it was declared or created before any of our code that actually did anything.

Now its time to move to bigger and better things.

It offtopic, but I feel we need to touch on this minor flaw. Floating point is sometimes not very preciese. To see what I mean try this code as your main function.

int main(){

 float A;

 A=340000000+742.34;

 printf("%f\n", A); /* if i stands for integer guess what f stands for */

 return 0;

}

As you can see there is a problem here! I'll explain why this happens once you've learned more information that is related to why that happens. This error is on all

computers, 386s, Pentiums, PowerPC chips, the Motorola 680x0 line, SGI workstations, Cray super computers, etc. Anyway, back to C.

You will probably find it useful to have a table of the printf conversion characters (things like %i) so here it is.

 Character

 Input

 Output

 d

 Integer

 signed decimal integer

 eg. 23242

 i

 Integer

 signed decimal integer

 eg. 23242

 o

 Integer

 unsigned octal integer

 eg. 55312

 u

 Integer

 unsigned decimal integer

 eg. 23242

 x

 Integer

 unsigned hexadecimal integer (with a,b,c,d,e,f)

 eg. 5aca

 X

 Integer

 unsigned hexadecimal integer (with A,B,C,D,E,F)

 eg. 5ACA

 f

 Floating Point

 signed value of the form [-]dddd.dddddd

 eg. 2342.123000

 e

 Floating Point

 signed value

 eg. 2.324212e+004

 g

 Floating Point

 signed value in either e or f form, based on given value and precision. Trailing zeros and the decimal point are printed if necessary.

 eg. 23242.1

 E

 Floating Point

 Same as e; with E for exponent

 G

 Floating Point

 Same as g; with E for exponent if e format used

 c

 Character

 Single character

 s

 String Pointer

 Prints charcters until a null-terminator is reached or prescision is reached

 %

 none

 Prints the % character

Finding the average was a pretty simple task. If you wanted to do something more complex with sin or log you would need to include math.h. Thats not a very useful

program, it always gives you the same answer. To make anything useful we need:

USER INPUT!

To get user input we are going to use a function from the stdio library again. This time lets make a program that isn't quite so retarded.

#include <stdio.h>

#include <math.h>

int main(){

 float a,b,c;

 printf("Welcome to the Pythagorus program\n\n");

 printf("Enter a ");

 scanf("%f", &a);

 printf("Enter b");

 scanf("%f", &b);

 c=sqrt(pow(a,2)+pow(b,2));

 printf("the hypotonose of the triangle is %f",c);

 return 0;

}

This program obviously uses Pythagous's formula. Everybody should have learned about it in school by now, a²+b²=c².

We needed to include math.h this time so that we had access to the square root function and the power function. The power function works by passing in the first

parameter (which was a or b) which will be raised to the power of the second parameter. The sqrt() function will find the square root of any number. We could have avoided

use of the c variable all together by putting printf("the hypotonose of the triangle is %f",sqrt(pow(a,2)+pow(b,2))), but we decided to make things bigger in order to

make them easier to follow.

I'll save you the trouble of guessing and crashing your computer: scanf can not print. You might think it would be easier to go scanf("Whats your favorite

integer?%d",&A); but that wont work. scanf only works with the printf conversion characters between its quotes, not normal text. Just use a printf before any scanf

statements if you need to output text..

The one large flaw with the above program is it doesn't do error checking. Try entering a letter instead of a number and see what happens, or entering a number then a space

then a second number.

As you can see we can not count on the user to do what he is supposed to do. In real programs we must put in special cases and treat the user like a moron and watch his

every move. Same with games, people love to find secrets. You have to make sure they don't go and find bugs!

When you pass a variable to scanf() you must put an & infront of it, otherwise it will not work. Next chapter I'll explain all about &, but for now just remember to use a & with

the variables in scanf().

Exercise

Time for you to write your own program without any help now! Try and write a program which asks for an integer kilometres and then converts that to miles. Eight kilomtres

is equal to five miles (thats a bit off, but close enough for this program). Try it right now. If you can't get it working within 5 minutes read the next paragraph.

Answer:

Create a variable called kilometers and one called miles. Print the instructions for the user on the screen. Scan the keyboard for input. The equation for converting

kilometres to miles is kilometres*5/8. Display the results. Return 0 to the operating system. If you needed to read this paragraph you are probably going to have a hard time

later on, so just to make sure you completly understand you should write a program that converts miles to kilometres.

 Choices and Loops

You're back! That means you figured out how to write that miles to kilometres program. Those last programs had problems with users inputing bad data. This chapter you

will learn to check to see if something such as the data is correct.

Conditions

if

There are going to be many times where we would like to do things like "if players score is greater than 1000 give him a bonus life/gun." Fortunatly C had just the thing to do

that! Its the if statment.

#include <stdio.h>

int main(){

 short UserGuess;

 printf("Guess which integer I am thinking of");

 scanf("%d", &UserGuess);

 if(UserGuess==7)

 printf("That's right, I was thinking of seven!");

 return 0;

}

WARNING: notice how the if statment works. It says if(something == somethingelse).

Not if(something = somethingelse). Understand the that code! You need two = beside each other in an if statement.

Try the following code to see what happens if you forget to use double =.

int main(){

 short a=6;

 if(a=5)

 printf("you should not see this message\n");

 return 0;

}

Shortcut: you can give a variable a value when it is declared such as short a=6;

If you run that code you will get the message that you should not see. If you only use one equal sign instead of two in your if statment you will do the equvilant of

 a=5;

 if(a)

 printf("you should not see this message\n);

Before C will check the if statment it will execute the assignement statment first (which is a=5). When a statment is evaluted it will either return 0 for false 1 for true (This is

why you return 0 to the operating system. The OS asks "did an error occure" and your program either replies yes (any number) or no everything went as planned by

returning a 0). When evaluating a statment like that, 5 (or any integer other than 0) counts as true.

When you do some real programming, especially after midnight when you are very tired you are likly to get an bugthat you just can't figure out. You will go over your code

and find that it is bullet proof, but still doesn't work! You'll go to bed and when you look at it the next day after being away from the problem for a bit you will find that you

accedently typed only one = instead of two. This will be an especially large problem for people with previous experience in BASIC or Pascal, so watch out! Well now you

have all been warned.

The if statment has even more power than merely seeing if something is equal to something else. Its other operators are < (less than), > (greater than), || (or), && (and), <=

(less than or equal), >= (greater than or equal), and != (not equal). You can also combine those into compound statements. For example you can do

if((a!=b)&&((c==d)||(e==g))) if you needed to. In english that means do the following statment if A isn't equal to B and if either C is equal to D or E is equal to G.

What if you want more than one line if a statement is true? Such as

if(A==8)

 printf("Enter your age");

 scanf("%d", &age);

You whould end up alway expecting the user for his age by executing the scanf() function. The bad part about the above bug is that the user only gets instructions when

A=8! The rest of the times the program just expects the user to know what to do!

The way to fix that is with the curly brace. Just put them around the code you want to have treated as one line. Such as

if(A==1){

 printf("Enter your age");

 scanf("%d", &age);

}

Many people like to put a { after all their if statements, even if it is one line. I guess this is a good habit because you are helping protect yourself from making errors.

Wow, that if is pretty cool and powerful. Is that all it can be used for? No! Its got even more power when used with:

else

Since we have to babysit the user so much else is a very handy addition for the if statment. It works like this:

if((UserInput>1)&&(UserInput<5)){

 /*some inportant code*/

}

else

 printf("Enter a number between 1 and 5\n");

Yes, the {} work for else if you want to do more than one line of code.

The /* comment goes here */ is a feature of C. Anything in bewteen the /* and */ are ignored by the compiler. This lets you lable important functions, and explain how

certain functions work. It is very important that you comment your own code. Even if nobody else is ever going to see it. For now and the next few chapters our code is

going to be extremly small and it'll be easy to understand the entire program just by looking at it. As time moves on and we start creating large projects you are not going to

be able to do that. You will forget how you code works eventually. Right now you are making extremely small programs, usually under 10 lines. Don't be surprised if your

first game is over a thousand, and eventually your programs are around 10,000! When you come back to look at your code months later you will wish that you had

comments if you don't bother to put them in. Put them in as you go. If you leave them out and say that you'll put them in at the end of the day you will forget to do it or more

likly just decide not to.

/* and */ are also handy for commenting out code. Just put a /* at the start of some code and a */ at the end and the compiler will skip everything inbetween. Its a lot better

than actually removing that code from your program. You can not nest them however. If you have a /* /* */ */ the compiler will see the first /* and ingore everything until it

finds a */. So it will comment out the second /*, stop commenting at the first */ and the final */ will be all alone which will result in an error.

You are likly to come accross // used to signify a comment. This C++, however both DJGPP and Watcom will accept it asC even though it is not official ANSI C code. //

comments everything out until it gets to the end of the line.

else if

Another handy feature of else is the else if combination. For example

if()...

else if()...

else if()...

else

This allows you to do a little bit of optimizing of your code. Once one if has been executed the rest wont ever be checked. If you just had three if statments the computer

would need to check each one which is a waste of time if you know that only one if statment of the three will ever be true at one time.

Make sure you understand that example program where you have to guess 7 before moving on.

while

Back to the program we wrote which asked you to guess a number and if you guessed seven it would tell you that you were right. Wouldn't be better if we could somehow

loop the code so that you could keep guessing until you got it right? C, of course, comes with a method to do that.

int main(){

 short UserGuess;

 printf("Guess the secret integer\n");

 scanf("%d",&UserGuess);

 while(UserGuess!=21){

 printf("no, thats wrong. Please, try again\n");

 scanf("%d",&UserGuess);

 }

 return 0;

}

As you can figure by looking at the above code that while is a lot like the if statment.

while checks to see if a condition is true, and if it is the code in the {} will be executed once. After the code has been executed it instead of moving on to the next line it

will jump back up to the while statement and check again. Like the if statement if you do not have {} it will do a single line instead of a series of instructions.

while has a cousin statment called the do while loop. The while statment checks a condition and then executes your code if the statement is true. The do statment goes

ahead and executes the code, and then checks to see if a condition is true. This garuntees that the code is executed atleast once. Sometimes this is preferred to while,

sometimes not.

do{

 /* some code */

} while (x>=0);

As you can see from that above example C is a lot like english. By now you should have figured out that programming is actually pretty easy. Well lets see how easy it is

when you have to do something more complicated, all yourself. Normally when programming you have to look things up yourself and teach yourself (oh, you already know

that! You are doing it right now.) Good luck with the next section.

Exercise

Time for a programming excercise. Write a program, either from scratch, or based on the above code (if you are a wimp!) which asks you to guess a number between 1 and

100. The program should give you hints such as if you need to guess higher or lower. Go try that now. If you get stuck read the next paragraph for one way to do it. BTW the

function rand() is in the stdlib.h library.

hint on using rand():

Treat rand() as a regular number and assign it to a variable.

A Possible Answer:

Create two variables (long), one to hold your guess, and the other to hold the number that they are trying to guess. To get a number within the range you need keep picking

random numbers until you get one between 1 and 100. Tell the user what to type and then scan for input. Check to see if the guess is higher than the secret number, if not

check to see if it is lower. Now check to see if they are equal, and if they are not equal you will have to jump back to telling the user to enter an integer.

If you wrote some code which you think should work, but for some reason rand() keeps giving you the same number you are probably thinking:

What the hell??

I bet that you just figured out that computers can't generate random numbers! Sorry if you were mislead to belive they could. To generate random numbers they have to do

things like take a look at the clock and give you the time as a random number, or more common, use a special formula.

The following text in blue is from a message by Michael Anttila aka PsychoMan of Craw Productions I saw on the internet:

Here's an example of a simple random number generator (taken from Future Crew's Starport][Intro):

int random() { seed = (seed * 1107030247) + 97177; return(((seed >> 15) & 8191) - 4096); }

That little routine returns a "random" number between -4096 and 4095.

I have some other code if anybody really wants it. The >> that you see up there is a bitshift, we'll get to that in chapter 4. In that case seed>>15 is the same as

seed/32768.

To sum it up rand() is based on a seed number. To make our guessing program fun to play again and again, we'll need a more random number. To do that we'll call srand()

which uses a different seed. The same seed will always give the same combination of "random" numbers. To make it random we would have to do something like read the

time and use the milliseconds as the seed, or we can ask the user for the seed. Try adding this code to the start of your program.

 scanf("%u", &Seed);

 srand(Seed);

if you include the proper libraries (time.h)you can do something like this:

 srand(time(NULL));

If you read the documents for time() you will see that it requires a parameter, which is why we need to have (NULL) instead of just (). Now that you know this all of this you

should be able to get a working program. Make sure you do that before continuing. Normally this would be a great time to end the chapter, but there is just one more loop,

so we might as well get it over with.

for

If we want to execute the code a certain number of times we could use a variable to count and check to see if that is at the limit such as

loop=0;

while(loop<100){

 /* the code you want to repeat */

 loop++;

}

Another shortcut: Instead of typing loop=loop+1; you can type loop++;

The more accecpted way to do that is to use a for loop. With a for loop you initialize the variable (give it a value), explain the condition, and do the counter all on one line.

The above three lines of code would turn into the single following line:

for(loop=0;loop<100;loop++){

 /* the code you want to repeat */

}

It is the same as the while loop in effect, but is easier to understand. It is easier to understand its purpose because when you see a for loop you will know that it is a a

counter loop, but while loops are generally used for things like user input which varies.

A char can hold 256 different values, which is how many characters there are. For example a is the 97th character in your computer. Since there are 256 different possible

values, chars are usually used to reprent letters. To the compiler 97 and 'a' are exactly the same. "a" is very different from 'a' as you'll see in the next chapter. A is value

65 in ASCII and the chacter 0 is 48. B is 66 etc. Try this code

for(loop='a';loop<='z';loop++)

 printf("\n%c is %d", loop, loop);

printf("\n%d\n", 'A');

Switch

The final C condition statment is the switch statement. Take a look at the following code.

char Choice;

printf("A) Play Game\n");

printf("B) Setup\n");

printf("C) Load\n");

printf("D) Quit\n");

scanf("%c",Choice);

switch(Choice){

 case 'A':

 /* code to start a new game*/

 case 'B':

 /* code to configure the game*/

 case 'C':

 /* code to load a saved game*/

 case 'D':

 /* code to exit*/

 default:

 printf("You may only select A B C or D");

}

As you can see this is very simular to the if else statment. The advantage of this is that it is much cleaner to look at than a whole bunch of if else statments. The

disadvantage is you can not evaluate expressions in the switch statment such as Choice=='A' or Choice>5 as part of the case statment.

By now you should be able to fully and completly understand 100% of that code without having to think about it much. If not, give yourself a little exercise to do to practice

writing a program from scratch.

Shortcuts

Everybody loves shortcuts, so I'll sum up the ones which I already showed you and introduce some new ones:

you can type main() instead of main(void)

you can assign a value to variable when it is created and create multipul variables on a single line (of the same type) such as

short x=319, y=199;

Instead of typing x=x+1; you can type x++; You can also type ++x, x--, and --x; This will produce different (marginally faster) machine code.

Instead of typing x=x+5; you can type x+=5; This is really just a shortcut, they both compile the same.

Warning make sure not to type something like x=-5 which will assign the value of -5 to x, be sure to put the operaters in the correct order. x-=5, x+=5, x*=5, x/=5;

Finally, the most confusing, but some people like to put it in their code, probably just to confuse the hell out of beginners.

a=(x>0)?1:2;

Yeah, that is kind of strange. Here is some code to try so you can figure it out yourself:

int x=1,a=0;

a=(x>0)?1:2;

printf("\n%d\n",a);

As you can probably guess this is some kind of if statment. Basically it means if the condition is true then give the first value to a, if the condition is falset then give the

second value to a.

This is pretty much reserved for use by the grand masters of C because its not really all that usefull unless you are an extremely slow typer who can't type if else. I haven't

check, but I don't belive it compiles any different than a regular if statement.

Exercise

Write a program which asks for a letter and then gives you the ASCII value for that letter. For example you would be able to type 0 and your program should respond with

48.

Offtopic: Did you know instead of typing letters by hitting them on the keyboard you can type their ASCII values? Try holding down Alt and typeing the 171 on the number

pad. (If you have mousekeys turned on in windows 95 this wont work) You should see a ½. Now you can be one of ëli+e dOodZ that hang out on IRC for a life!

Congratulations

Well you have made it through the first chapters! Take a break and get ready to move on to the next chapter where we will learn enough to make a real game! Well acutally

don't expect too much, the game will be in text mode and its not going to be anything you really want to show your friends, but it'll better than our number guessing program

or kilometer to miles converter! You have to start somewhere...

 Functions, Arrays, and Pointers

Last chpater you learned the most basic parts of C. The last thing you did last chapter was the switch statement. The code we used involved getting a users choice of a

letter. What if we want a string of letters like a name, do we have to use char letter1, letter2; etc?

Of course not. C lets you create your own variable types based on the provided 11. Creating our own variable types is what this chapter is all about.

Arrays

Lets say we wanted to get a persons name. How could we do that? Char would only let us take one letter. The solutions is an array. An array is a list of variables (of the

same type). Lets see a simple example.

#include <stdio.h>

int main(){

 char Name[20];

 printf("What's your name?\n");

 scanf("%s", Name);

 return 0;

}

This sets up an array which can hold a maximum of 20 chars. This means the array will be numbered from 0 to 19. When you enter your name it can only contain 19 chars,

even though we made room for 20 chars. By creating name[20] we tell the computer we will only need a maximum of 20 chars and the computer will reserve that much

memory for us. To access the first char in the list use Name[0]. To access the 10th char use Name[9];

Warning: If you write a 21st or 101st char you will write past the bounds of the array, this will likly crash your program because you mightbe writing over memory reserved for

something else. You might already have a variable there and this would change the value of that variable to something else! You could have your actual program there and

would be overwriting your program, which would really cause trouble! You might even end up writing overtop of the memory which DOS itself is using. As you can see it is

extremly important to make sure that you do not go past where you intended your array to end! Over writing memory is probably the largest cause of crashes and bugs in all

programs. This is something you need to be careful with.

The reason that we can only have 19 instead of 20 chars is because whenever we make a string C needs to know where it ends. There is no sence printing a whole 80 char

array when you only used the first 5 to store a persons name! Instead of seeing 'John' we would see 'John' followed by 75 random characters which were in the memory. Or if

you got a long name like Moebious and the next name was Tim you would see Timbious. This would be because your computers memory doesn't change until you tell it to

(which is a good thing!).

At the end of the string a NULL character (aka NULL terminator) will be inserted. This just tells C to stop and not display the rest of the data. If you used all 20 spaces for

the name and had to NULL terminator at the end when you tried to print the name it would print the first 20 characters, but because it didn't find the NULL it would keep

going until it found one sitting in memory for some reason.

You probably noticed that there was no & when we used scanf. This is because it was a string, I'll explain why near the end of this chapter.

Like I said last chapter, 'a' and "a" are different. 'a' is the letter a (ASCII value 97). "a" is the string a. That means it is really a followed by a NULL terminator, which is

TWO characters. They are completely different.

Accessing individual parts of an array is simple:

main(){

 short Numbers[10];

 char loop;

 for(loop=0;loop<10;loop++)

 Numbers[loop]=loop;

 Numbers[0]=37;

 Numbers[9]=0;

 for(loop=0;loop<10;loop++)

 printf(%3i",Numbers[loop]);

 return 0;

}

New The %3i in the printf statment is the same as a normal %i, only it reserves room for three digits. A very handy feature for lining up output.

Functions

I can't belive I waited this long to explain functions! An example of a function is main(). You can create other functions and give them any name you want. When you call

the function the program then jumps from where it is running to where the function you called begins and then runs the code from that point until the function is finished, or

that function calls another function.

Another example of functions which we have already used are printf() and scanf(). Our code runs until it gets to the printf() at which point it jumps to the function printf()

(whose code we don't, but its there because we included stdio.h. If you don't include that library you can't use printf()). When printf() is finished the program then

continues running as normal.

Here is an example of a custom function of our own.

#include <stdio.h>

void Welcome(){

 printf("Welcome to my example of a function program");

}

int main(){

 Welcome();

 return 0;

}

As you can see creating a function is pretty simple. You should probably never actually do anything in the main() function like we are doing. main() should really just call a

couple functions. Well thats just computer science theroy. You can do whatever you want, but my advive is to try and make things as modular as possible by using

functions. If you program everything correctly you will be able to write some functions to draw sprites or move a 3D spaceship and then use the exact same code in another

game or demo. This is called reusing your code. If you look at a company like SNK (makers of the Neo Geo) you will see that they have mastered reusing their code! :) If

your functions are flexable enough you can have more varity than the Street Fighter 2 series from Capcom. The best example of reusing code I can think of is libraries like

DirectX.

Parameters/Arguments

A variable is only accessable in its own function. If you create a variable in main() no other function will even know it exists.

Lets walk through the following code

void TitleScreen(char n){

 char i;

 for(i=0;i<n;i++)

 printf("Welcome\n");

}

void GetAge(short Age){

 printf("You age is currently %i\n",Age);

 printf("Whats your age?\n");

 scanf("%i", Age);

 printf("You claim your age is %i.\n\n",Age)

}

void PrintAge(short AgeToPrint){

 printf("You age is %i", AgeToPrint);

}

main(){

 short Age=0;

 TitleScreen(2);

 GetAge(Age);

 PrintAge(Age);

 return 0;

}

Your functions do not have to appear in any special order. All that matters is that you have the function before it is called. This is why all the functions are before main().

Compile the code and run it so you know what happens.

We call TitleScreen() and pass the parameter 2 which it uses in its loop. Normally you should use better variable names than single letter to make your code easy to read

and understand.

GetAge() takes the value of Age and prints it. Next it gets the age and prints it on the screen.

PrintAge() then prints the value of Age.

What has happened here is we had two variables in our program called Age. One is in the main() function and then other lives in the GetAge() function. When we pass

Age to the GetAge() function from main() we don't actually pass that variable, we pass its value. To get the age of a person we will have GetAge() return a value. The new

version of GetAge() is a bit different and it is called the exact same way as rand().

short GetAge(){

 short Age;

 printf("Whats your age?\n");

 scanf("%i", Age);

 return Age;

}

It would now be called from main like this: Age=GetAge();

When GetAge() is called it creates a local variable called Age. Then it prints instructions and gets the age. Then it returns the value of Age to the function that called it and

destroys the variable Age it had created.

Exercise

Make a function which finds the average of some numbers.

Use this function prototype:

long average(long HowMany, long Numbers[]);

A function prototype is used to help the compiler. If you have a funtion a which needs to be able to call function b and function b needs to be able to call function a you have

a problem. No matter what order you have the functions it will not compile because a function needs to appear before it can be called.

A prototype is just like a function, except instead of {} it has a ;. With prototypes you don't even need the variable names, all that matters is the return type (such as void or

short), the function name, and the parameter types such as.

void DoSomething(char, char, long);

void DoSomething(char x, char y, long z){

 /* some code */

}

When you pass an array as a parameter you can either declare it as Name[] or Name[20]. The difference is Name[20] always allocates enough space for 20 elements no

matter how many you pass while Name[] only allocates the same as you passed. Name[] would make 10 if the array you passed had 10 elements or would allocate 3000

spaces if you passed an array with 3000 elements.

Don't read the hints unless you are 100% sure that you can't figure this out. Even if you are sure you can't figure this out, try it for a while before you look at the hints.

When you are writing a video game and need to do something there is not going to be any hints for you!

hint 1:

average is found by adding some numbers together and then dividing that result by the number of numbers added together. For example the average of 10 and 20 is 15

because 10+20=30 and 30/2 is 15.

hint 2: Here is the source code execpt for the average function.

main(){

 long Nums[5], HowMany, loop, Answer;

 do{

 printf("How many numbers will you enter?\n");

 scanf("%i", HowMany);

 }while((HowMany<2)||(HowMany>5));

 for(loop=0;loop<HowMany;loop++){

 printf("Enter number %i",loop+1);

 scanf("%i",Nums[loop]);

 }

 Answer=Average(HowMany, Nums);

 printf("\n The average of your numbers was %i", Answer);

 return 0;

}

hint 3:

Do you really need to read this part? All you have to do is write one function, and you already have the prototype.

create two variables, one to hold the sum of the numbers and the other for a for loop. Go into a for loop which is used to add all the numbers up. Return the sum divided by

the number of numbers used.

hint 4:

You needed this hint too? OK, here is the complete source code for one possible way to do it.

long average(long HowMany, long Numbers[]){

 long sum=0,loop; /*we initiialize sum to zero so that it doesn't end up with a random value in it already*/

 for(loop=0;loop<HowMany;loop++)

 sum+=Numbers[loop];

 return sum/HowMany;

}

This is pretty irellivent, but there is a second way C allows you to declare parameters. You just put the name in the parameter list and then put disribe the parameter before

the { such as:

foo(parms, parm[])

 long parms;

 char parm[];

 {

 return 0;

}

I don't know why, but computer sciencetists insist on calling their functions foo when giving examples. Maybe its an inside joke or something..

Pointers

This is probably the most confusing parts of C. It is also one of the most importantand powerful features of C. Pointers allow you to do a lot of things a lot faster than if they

didn't exist.

A pointer is declared the same as a normal variable, only with an * in front of it.

long a=0;

long *b;

When a is created you have a normal variable which you should be familliar with by now. To understand pointers you need to know a little about memory.

Lets say the computer memory starts at place 0 and keeps going for 32megs. When you declare a it might take possition 1038 in the computers memory. When you

declare *b it might take possition 1039. *b will hold a value just like a regular variable, but the value it holds is used to point to a different variable in memory such as the one

that might be at 104.

If you want to know the address of a variable you would use the & infront of its name. In this case a would have the value of 0 and &a would have the address 1038.

If we give *b the value of &a we can then access a through b! Try the following code:

 short a, *b;

 a=10;

 b=&a;

 *b=12;

 printf("a is in position %u and holds %u\nb is in position %u and holds %u\n*b points to %u\n",&a, a, &b, b, *b);

First we create a and *b. We don't know what value a holds or where b points. We then say put 10 into a. Next we make b point to the address of a. Since b points holds

a's address *b points to a's value. When we say *b=12 we change the value of a because *b is a!

This is essential C knowlegde. If you didn't pick up on it right away, think about it a little bit more. This might sound silly, but draw a picture if it helps. If you still don't feel

you know it 100% don't worry, you'll get it soon. The best way to understand this is experience.. As you become experienced in C you will just get a feel for little things like

this. When you referr to a you actually means its value. When you use &a you talk about the actual variable as it is phsyically in memory.

Exercise

Write a program that creates variables a and b. It also creates a pointer *temp. Have it get input for a and b and then switch the values of a and b using *temp.

No hints this time!

When you are done download Escape. Its the game we will spend most of next chapter making. Yes, it is aweful. Don't get excited about playing a good, or even a really

fun game. Its modeled after the great games of the early computer days when people had tape drives and floppies were rare things found only on expensive computers. Its

pretty much a single player MUD.

 Pass by reference, Pointers as Arrays, Enum,

 and a Game

Once you have finished this chapter you will pretty much be masters of C. You should be able to understand any C that you find on the internet. The only things left to teach

if you want to make games are grafx techniques and low level computer and os specific information. Once you know that, the only thing holding you back will be

experience.

Pass by reference

When you pass a parameters to a function is is possible to pass them by reference rather than by value. When you pass by referrence you pass the address of the variable

(the actual variable), not its value. For example:

#include <stdio.h>

void change(char *n){

 *n=70;

}

int main(){

 char Number=0;

 printf("Number=%i\n",Number);

 change(&Number);

 printf("Number=%i\n",Number);

 return 0;

}

When you run this program it will output:

Number=0

Number=70

To repeat what you already know. In the change function we referr to n as *n, not n. This is because it is a pointer. If you tried n=70 you would make n point to address 70

instead of at Number, which would have no effect on anything (unless you then try to change value of *n). *n=70 puts the value 70 in the memory address which n contains,

which is the address of Number. This is another way for your functions to communicate.

Arrays are always passed as pointers.

Pointers as arrays

When you create an array, you actually create a pointer! The difference between an array and a normal point is that an array is a constant pointer. This means that you

can't change what it points to, and you can't change the size of the array.

This is why when you called scanf() with a string (an array) you did not need the &. The & is used to referr to the adress of the variable, but since you always pass an array

by referrence instead of by value you don't need to specify this.

You can treat pointers as arrays:

#include <stdio.h>

#include <string.h>

int main(){

 char *Name;

 Name=(char *)malloc(30);

 strcpy(Name,"Festive Seasons Greetings");

 printf("%s\n",Name);

 Name[0]=' ';

 Name[1]=' ';

 Name[2]=' ';

 Name[3]='l';

 Name[11]=' ';

 Name[12]=' ';

 Name[13]=' ';

 Name[14]=' ';

 Name[15]=' ';

 Name[16]=' ';

 Name[17]=' ';

 Name[20]='l';

 Name[21]=' ';

 Name[22]=' ';

 Name[23]=' ';

 printf("%s\n",Name);

 free(Name);

 return 0;

}

Time to walk through more code. The first line creates the variable. If you think back to the difference between *n= and n= you will be able to figure out that Name= changes

what Name points to. malloc (which came from string.h. It is also part of other libraries) allocated memory for 30 chars. The (char *) is called type casting. This means it

will be a char *, not an integer pointer or something else.

That whole line makes room for 30 chars. From that point on you can treat Name exactly as if you had created it like char Name[30];.

String copy, strcpy, copies a string. You first give it the destination string followed by the source string. It works exactly like the DOS command copy, but the parameters

are backwards. The rest of the lines are used to copy the GM Christmas commercial where the lights that say "Festive Seasons Greetings" partially burn out and turn to

"live sea eels".

Memory Functions

Typing Name[0]=' ' was a waste of time, even with cut and paste. C has ways to do things like that much faster. For example to enter spaces in the elements 0,1,2 we can

use a single command. We can't use string copy because it would stick a NULL character in possition 3. We use memset(pointer, value, quantity);. Here is how we would

have done that.

memset(Name,' ',3);

Name[3]='l';

memset(Name+11,' ',7);

Name[20]='l';

memset(&Name[21],' ',3);

Since Name is a pointer we can simply add to it to get the next elements as shown by Name+11. This can't be done with arrays. With arrays you have to give the address

of the element, as shown by &Name[21].

If you decide to use memset to fill a string with a value, remember to have a NULL character as the last one such as:

char Name[20];

memset(Name,107,19);

Name[19]=NULL;

That would create an array of 20 elements, set the first 19 (numbered 0-18) to 107 (we should have typed 'k' instead), make the last element (19) equal NULL and then print

the name. That should be pretty basic stuff by now.

Structures

As mentioned above C includes only 11 variable types. If we need a bunch of the same type of variable then arrays are wonderful, but if we need different types such as

chars, longs, and floats then arrays can not be used.

The solution is structures. They can be used to hold different amounts of any type of variable, even arrays or other sturctures. You can also have arrays of structuress. Here

is an example struct which could be used in a role playing game to discribe a character.

typedef struct{

 char Name[20];

 short HitPoints;

 short MaxHitPoints;

 char Strength;

 char Wisdom;

 char Speed;

}PlayerType;

PlayerType Hero;

strcpy(Hero.Name,"Slayer");

Hero.HitPoints=12;

Hero.MaxHitPoints=12;

Hero.Strength=14;

Hero.Wisdom=17;

Hero.Speed=6;

printf("%s has %i hit points left\n", Hero.Name, Hero.HitPoints);

Run this program. Once you have made a structure you can then use it like the built in variable types like char and float. You probably understand everything about

structures now, so I wont go into them. They are pretty self explanitory.

Enum

Enum is hard to explain. It tells the compiler to give a string an integer number. It is useful for making your code more readable.

int Day;

enum{Mon, Tues, Wed, Thurs, Fri, Sat, Sun};

for(Day=Mon;Day<=Sun;Day++)

 printf("It is day %i of the week\n", Day);

Run the above program. As you can see we can now replace 0 with Mon 1 with Tues etc. This makes the purpose of our for loop more clear. That's about it for enum.

Limits of scanf()!

scanf() is great for getting a name, but we can't use it in any games becase we don't want the game to pause while waiting for a key to be hit and then after every key press

such as up the user would have to hit enter!

To solve this problem we will use getch() and kbhit(). Both functions are in the conio.h (CONsol Input Output).

To wait for a a key to be pressed you can just use a while loop that repeats nothing while the keyboard is not hit.

while(!kbhit());

This function will wait for a certain key to be pressed:

void Pause(char key);

 char ch=NULL;

 while(ch!=key){

 if(kbhit())

 ch=getch();

 }

}

To wait for a space we use Pause(' '); For keys such as escape we need to know their ascii codes. To wait for esc we would call Pause(27);

The game!

This is the first program we will do which is going to be different for Watcom and DJGPP. We are going to have a long description of some rooms which are longer than one

line. DJGPP lets you just continue on the next line, but Watcom wants a \ at the end of the line to show that the next line is just a continuation of the current one. Nothing

major.

My original plan for this game was to give you some hints and let you type the whole thing. Then as I got further into the game and was writing descriptions for all the rooms

I decided I'd give you just the descriptions, not the full source code. Then by the end I had spend way longer on it than I had expected so I am going to give you the full

source code! The game takes too long to program for its own good.

This game is so bad I wouldn't even show it to my friends, but it will be a good example of a lot of the things we covered. If you do get a job in the game industry, chances

are that when you first start you wont get a cool job right away, you'll end up being one of the guys who ports a game from one platform to another until you've proven

yourself, so reading this source code will be a perfect example of that. Especially since there are a lot of places where the source code could be clearer, and there are NO

comments.

Here is the the DJGPP code so you can compile this yourself.

Lets walk through the code now and add comments and I'll explain everything.

#include <stdio.h> /* printf() scanf() */

#include <conio.h> /* kbhit() getch() */

#include <string.h> /* strcpy() strcmp() */

#include <stdlib.h> /* rand() srand() */

#include <time.h> /* time*/

#define TotalItems 5

#define HouseZ 2

#define HouseX 3

#define HouseY 5

#define A B means that whenver the compiler sees A it will replace it with B. Having TotalItems in one spot makes it easier to modify your code. If you have 5 everywhere

you will have to search through your program and change all the 5s to the new number. Thats a hell of a lot harder and more time consuming than changing one number. It

is also easier to understand what something means if it is spell out such as if(player.Vertical_Position<Top_of_Spikes) vsif(player.Vertical_Position<4)

enum{nothing, open, closed, made, unmade};

When we change the status of objects it is easier to say door=closed that door=1 if we want to be able to understand this later.

enum{false,true}

Since any non zero number means true to an if statment we have to make sure false=0 and true=1. We can not use enum{true, false} if we want correct results.

typedef struct{

 char N;

 char S;

 char E;

 char W;

 char U;

 char D;

 char End;

 char Name[40];

 char Brief[240];

 char Description[8000];

} room;

N is for north S is for south etc. They will hold either true or false. Name is the name of the room such as hall etc, Brief is a short summary of the room, and Desciption is

what you get if you look at the room.

typedef struct{

 char Name[40];

 char x,y,z;

 char InHand, Moveable, State;

 char Description[8000];

} object;

z,x,y are used to keep track of what room the object is in if you put it down. InHand is true if you are carrying it, Moveable is true for things like a key, but not for a closet or

bed, and State is used to see if the item is open or closed, happy or sad, etc.

typedef struct{

 char Name[20];

 char x,y,z;

} player;

typedef struct{

 char Name[40];

 char Before[4000],

 After[4000];

 char DoneWith;

 char Question[8000];

 char Description[8000];

 char Choice[7][80];

 char z,x,y;

} NPC;

NPC stands for Non Player Character, which will be the other humans in the game. Before is what he says before you complete his/her quest and after is what he'll say

when you do what he wanted. DoneWith holds true/false to see if you have done what he wants and if Before or After should be displayed. Choice is an array of arrays, it is

used to display the different questions that you are allowed to ask him.

player Captive;

room House[HouseZ][HouseX][HouseY];

object Item[TotalItems];

NPC OldMan;

void WaitKey();

void Pause(char key){

 char ch=NULL;

 while(ch!=key)

 if(kbhit())

 ch=getch();

}

Pause waits for the key you pass as a parameter to be hit.

void Intro();

void DoEnd();

void HouseText();

This function puts all the text information into the into the arrays for easy access later.

void HouseMap();

Initializes the data fields for all the rooms creating a map.

void InitHouse();

This function initialies all the rooms to nothing and then calls HouseText and HouseMap to create thehouse.

void InitPlayer();

void InitNPC();

void InitItems();

These are all simular to InitHouse(); Normally you would load your data from a file rather than hard code it into the exe like we are doing.

void DescriptionRoom();

This function works by checking all the possible things that coule be in the room such as exits in each direction, an item, or the old man.

char GetInput(char Verb[], char Noun[]){

 printf("\nDo?>");

 scanf("%s", Verb);

 if(!strcmp(Verb,"quit")||!strcmp(Verb,"exit")||!strcmp(Verb,"end"))

 return true;

 else{

 printf("\nTo?>");

 scanf("%s", Noun);

 } if(!strcmp(Verb, "go")){

 if((!strcmp(Noun, "home"))&&(House[Captive.z][Captive.x][Captive.y].End==true))

 return true;

 else return false;

 } else return false;

}

This function takes the verb and noun strings and asks for input for each of them. It will return true if it is supposed to stop asking for input, such as if you type quit or if you

find the way out of the house. If not it will return false.

void PlayGame();

This function is called when you play the old mans game.

To pick a secret number for the user to guess we did it this way:

do

 SecretNumber=rand()/1000;

while((SecretNumber>16)||(SecretNumber<1));

Basically we keep picking a new number and dividing it by 1000 until we get it to be less than or equal to 16 or greater than or equal to one.

A better way to do this is to use the %, or modula operator. It gives you the remainder. We could simply use rand()%16 to get a possible 16 different values. The remainder

will be 0 to 15 so we simply add one to get the values 1-16 we want.

void Look(char Noun[]);

This is one of the functions which is called when you type that verb.

void DoInput(char Verb[], char Noun[]);

This is simply used to call the various verb functions such as look.

void DoGame();

This cycles through DoInput(), DescriptionRoom(), and GetInput() until GetInput returns true. This is the main game loop.

void main();

This is where the whole thing starts. It initializes game world and then calls DoGame().

srand((unsigned)time(NULL));

Without this function rand() always returns a set patern. srand will create a new patern. The only way to make it random is to take a look at the clock and base the patern

on what the time is. The (unsigned) before time(NULL) is used to cast the return value to an unsigned value.

 Optimization

Speed. Without it games are nothing. People continously upgrade their computers from 386s to 486s to Pentiums, to MMx Penitums with 3D video cards, and will contiue

to do as long as video games exist. People claim to upgrade their computers for things like word processors, but how much better does a 300MHz MMX Pentium Pro with

wave table sound card and 3D accellerator run WordPerfect? "Look it only took .0001 seconds instead of .01 seconds to find my next spelling mistake!"

People upgrade their computers so that a game runs better. There are two ways to make a game run better. The customer can upgrade their hardware, or the programmers

can do a better job. Yes, games like Quake and Need For Speed are pretty much programmed as well as can be done, but what about other games like NHL96, Warcraft 2,

Fatal Racing, all those crappy Doom clones, and about 75% of the games made? They could be optimized to run better.

A good example of doing more with the same hardware comes from Sega's AM2 team. Take a look at how aweful Virtua Fighter is for the Saturn. No wonder Sony outsold

it from day one! Tekken and Toshinden were a million times better in the grafx department. After Sega had time to get to know the Saturn hardware better they released

Virtua Fighter Remix. That is what Sega needed when they released the Saturn, not Virtua Fighter! Then about a year later Sega released Virtua Fighter 2 which was an

arcade perfect translation execpt for the backgrounds.

If you compare Virtua Fighter and Virtua Fighter 2 for the Saturn, you'd think you were playing two different systems. As programmers we have to squeeze every last bit of

juice out of the system if we want our games to sell. We could do the same as Sega did when the released Sonic for the PC and say it needs a Pentium with 8 megs (even

though it runs fine on the Genesis, a 7MHz 16bit system, and the entire game is only 512K!!) to make up for our laziness and lack of talent, or we can do as the demo

coders do - the "impossible."

Take a look at the Legend (disks 1 and 2)demo, it runs on at full speed on a 286! The Show demo runs on at full frame rate on a 386. Look at Magic64, a mere 64K for the

3D engine, the sound player, the song, 3D landscape, and the textures! Magic Carpet from Bullfrog requires 8megs. Animate and 4KG are a mere 4K! Now that is being

efficent. This is the kind of code we want to be able to produce.

There is two ways to achive speed. One is through efficent algorythms. The other is through efficent implemation of those algorythms. If we choose a bad way of doing

something, no matter how much we optimize it with asm, it'll still be slow. An example would be looking up a persons name in the phone book. A bad way to do it would be

to start at the first page and start checking names. You could 'optimize' that way a little bit by turning the pages really fast, and you might be able to half the time it would

take. However that is a stupid way of doing things, a person turning the pages very slow (he's not very well optimized) is still going to find the name before you is he does it

the normal way.

This chapter is about finding fast ways to do some very general things.

Searching

If all we had a list of items which are in a random order then the only way to find something is to start at one end and check each item. If we knew a phone number and

wanted to find the name to match it this is how we would look through a phone book. This is called linear search. Its dead slow, but sometimes its all we can do.

However most of the time we deal with sorted lists. This brings us to binary search. If we know the name of a person we can find his number much faster than if we know

his number and want to find his name. When you played the escape game in the last chapter the only way to get the key from the old man was know his secret number.

To find it you learned you needed to cut the list in half until you eventually were at only one number. This is essentually the same as using the phone book. You check a

page and then flip forward or backwards, each time getting much closer to the name. This is called binary search, which as you can tell is much faster than linear search,

especially for large lists such as phone books.

Something interesting is that with a list of 16 (or less) it will take you 4 guesses. With a list of 256 (or less) it will take you 8 guesses. With a list of 2 it will take 1 guess.

With 1 item you don't need any guesses. There is a patern there. 2 is raised to the power of the number of guesses it takes. If you know logs you can figure out how mnay

guesses it would take for a list of 1000. We'll leave it to the universities to teach more about that.

Sorting

Often we will need to sort lists for various reasons such as to make searching faster. There are various ways to do this. One is to randomly pick an order and then check to

see if that is correct. If you have two items this system will be alright. If you have three it starts to get slow. By the time you get to four items this method is very slow

compared to other ways. It would be impossible to do something like sorting a deck of cards this way. (After you shuffel a deck of cards has it ever even been close to being

partially shuffled?)

So our goal is going to be to quickly sort a deck of cards. If any of you are wondering how long it would take for your new Pentium Pro 200, SGI Death Star, Cray super

computer, or that 9000 Pentium Pro computer to sort a deck of cards this way don't bother trying. It is possible that your computer would sort it first try, but probably not.

Even if your computer was made at the beginning of estimated time (billion and billions of years ago) it probably still wouldn't be done. Even if each molecule in the universe

was your computer, the universe still probably wouldn't be done. Well the there is a lot of the universe that is nothing, so even if the whole knowen universe was filled with

molecules as dense as water (trying picking up a 20 litre bucket (5 gallon) of water if you don't think water is heavy) each working in perfect paralle, each working since the

beginning of time, each more powerful than a P6 or PPC 604, each never making a mistake, chances are that your deck of cards still would not be sorted yet! So don't try

that at home kids.

We need to be able to sort the deck of cards faster than the imaginary universe computer. Your goal for this chapter is to sort a deck of cards (an array of chars with the

values between 1 and 52).

Bubble Sort

One way (the worst way which is reasonably fast) is called bubble sort. It works by bubbleing a number slowly to the top. Such as in the following example where we will

sort from 0 to 9.

7942103685

^_________

We start by comparing the first two numbers. If the first is smaller than the second we just leave them and move on to the second number. If not we switch the them around.

Since 7 and 8 are already in order we simply move on to the second positition and compare again.

7942103685

_^________

9 and 4 need to be switched.

7492103685

__^_______

9 and 2 need to be switched.

7429103685

___^______

9 and 1 need to be switched.

7421903685

____^_____

As you can see the 9 is slowly bubbling to the top of the list. Once we get to the end we simply do this again and again until we go through the list without moving any

numbers.

This is what the list will look like at the end of each sort.

7421036859

4210367589

2103465789

1023456789

0123456789

DONE!

Exercise

Now that you understand how this is works100%, convert it into C code. I'll save you the peon work of typing 40 lines of basic code, so all you have to do is read over my

code, and write one single function. Now that you know all of the things C can be used for, its time to try implementing a simple idea in C.

#include <stdio.h>

#define ListSize 10

enum{false, true};

long random(long Max){

 return rand()%Max;

}

void InitList(char List[]){

 char redo; long MainLoop, MiniLoop;

 memset(List, 0, ListSize);

 List[0]=random(ListSize)+1;

 for(MainLoop=1;MainLoop<ListSize;MainLoop++){

 do{

 List[MainLoop]=random(ListSize)+1;

 redo=false;

 for(MiniLoop=0;MiniLoop<MainLoop;MiniLoop++)

 if(List[MainLoop]==List[MiniLoop])

 redo=true;

 } while(redo);

 }

}

void Swap(char List[], long pos1, long pos2){

 char temp; temp=List[pos1];

 List[pos1]=List[pos2];

 List[pos2]=temp;

}

void SortList(char List[]){}

void ShowList(char List[]){

 long loop;

 printf("\n");

 for(loop=0;loop<ListSize;loop++)

 printf("%3i", List[loop]);

 printf("\n");

}

int main(){

 char List[ListSize],loop;

 InitList(List);

 ShowList(List);

 SortList(List);

 ShowList(List);

 return 0;

}

InitList could really be just for(loop=0;loop<ListSize;loop++) List[loop]=random(ListSize); but I felt like implementing it in a way which generated all the numbers from 1

to the ListSize without repeating.

If you make a mistake and you think your computer may have frozen, before you hit reset or terminate the dos prompt try hitting Ctrl C or Ctrl Break. (Break is also the

Pause key) That might just save you from a reset if you are in DOS. If you are in Win95 you should be able to close the DOS windows, but Win95 isn't very stable and will

probably die :)

Hints for SortList(long List[]);

Hint 1:

 ListSize will equal 10, but the array is numbered 0 to 9.

Hint 2:

DO NOT READ THIS HINT SECTION UNLESS YOU ARE TRUELY STUCK AND EVEN YOUR FRIENDS AND FAMILY MEMBERS CAN'T SAVE YOU.

 The following is hard to read so that you wont accedently cheat.

 first make a variable to hold if the list is sorted or not. Create a while loop which runs while the list is not sorted. Change the value stored in the sorted variable to

 true everytime that the mainloop starts. Now start a counting loop at zero which goes until ListSize one step at a time. Check if you are comparing two numbers

 which are infact within the array boundaries. Call the function swap if the two values you are comparing are not in order. If you called swap you have to change sorted

 to false because the list was not sorted already. And thats all there is to it!

 This is for those that haven't been paying attention and should probably start the series over again here is the code:

 while(!sorted){ sorted=true; for(loop=0;loop<ListSize;loop++){ if(loop+1!=ListSize) if(List[loop]>List[loop+1]){ Swap(List, loop, loop+1); sorted=false;

If your computer can sort that list fast, make the list size 70,000 and see what happens. Before you do that, try it at only 700. (You will have to change my code as I had no

intention of ever going into the thousands with my code so you are going to need to make some changes.) When you try the higher numbers be sure to put a

printf("%5i",MainLoop); before the do{ ... } while loop in InitList so you can see what is going on.

Once you've fixed all the bugs and made InitList fast (I gave an example of a simpler way to do it a couple paragraphs above) try going from 10(to make sure that everything

still works) to 100 to 1000 to 10000 to 100000 etc until it is too slow for your computer. If you can get to 100,000 you must have a killer computer, maybe one of those

966GHz P9s? :) On my 486DX2 66MHz it took over three minutes to sort 10,000 numbers, but 100 was instant, and 1000 was almost instant.

This algorythm doesn't scale well, its Big O (thats an oh not a zero) is n². What does that mean? Take little computer science at university and you'll learn all about that. To

summerize Big O (AKA Big Omega) a list of 10 would take 100 time units (10x10), 100 items takes 10,000 time units (100x100), 1000 items would take 1,000,000 (1000²)

and 10,000 takes 100,000,000 time units (10,000²).

100,000,000

As you can see when we make the list a bit bigger, the time it takes gets much bigger! In fact it is just as fast to sort 100 lists of 1000 than it is to sort a single list of

10000.

Take a minute to think of some ways to speed this algorthm up.

One way to speed it up would be to switch directions everytime. Sort the following two arrays in your head:

4 0 1 2 3

1 2 3 4 0

As you can see it would take one pass to sort the topone, but to sort the second one it would take four passes. If the lists were 10000 long it would take one pass to sort

the first and 9999 to sort the other, even though both arrays had only a single number out of place. This is why sorting in two directions would make the algorythm faster.

Another trick would be to keep track of the end numbers. Remember the first example I showed?

7421036859

4210367589

2103465789

1023456789

0123456789

You'll notice that after the first sort the 9 is in place. Then the 8, then the 7, etc. After every sort atleast one number falls in place. If we keep track of the end of the

unsorted list we are making the list shorter each time we go through!

There is an algorthm based on that way of sorting called Selection sort. It works by going through the entire list and finding the lowest value, and putting that in possition 0

and contiuing until it gets the list sorted. This can be quite a bit faster than bubble sort when dealing with other types of data such as large structs. Theory says it is the

same speed as bubble sort, but thats not the case. With bubble sort we are constantly using swap to move data. When there is a lot of data to be moved everytime you

end up spending a lot of time in swap function. With selection sort you only call swap once each time through.

Even with all the speed up tricks in the world, both by modifing the algorythm and by using super fast asm, bubble sort is still slow. No matter what you do to your

Volkswagon, its not going to be as fast as a Porsche.

Exercise:

Come up with a faster method of sorting. There are probably half a dozen different ways to sort which are all faster than bubble sort. If you base your method on bubble sort

you are wasting your time. You need to come up with a different way. Atleast one of those answers should be completely obvious. Alright, maybe it isn't right this second,

but once you know the answer you'll think it was fairly obvious.

Here is a hint, take a deck of cards and give yourself only one suit such as spades and a sort that as fast as you can. Since quantum computers aren't invented yet you

can't just put them all down and grab the highest cards in order, you have to sort them in a way you will be able to code.

Don't read the next paragraph until you've come up with an answer.

You might have come up with insertion sort, which if you were to implement it would be faster than bubble sort or selection sort, but there are even faster methods. If this

you your methode you came up with insertion sort. Insertion sort works by taking the first card. Finding the card with the closest value and putting it in its next to that card.

Then it moves to the second card and put it in its place etc. This is good, but not the best. Its also kind of tricky to code because when you move a card from the first

position to the fifth position you will have to shift the cards in the second, third, forth, and fifth positions.

If you came up with insertion sort, good work! To come up with with Quick Sort or Merge Sort (which are both the fastest possible) try working with the fuill deck or

multipule decks and you'll probably stumble on a better sorting algorythm without realizeing it. Its actually very intuitive. If you watch a little kid sort his hundreds of hockey

cards he will use merge sort. I'll go over merge and quick in the next chapter.

#include

You are probably starting to notice that we are already re-using functions. random() is a function which we will simply copy and paste into every program that make, and as

we get better our library of useful functions is going to grow. As our programs get bigger copy and paste wont be as useful because our programs will become thousands of

lines long. This might not seems that bad, but try finding your one function that you want to change, or try to understand a huge program like that!

We need to start to make our own .h files to include. There is no difference between a .h and a .c file in reality. Both are simply text files which you can edit with any text

editor. Tradition has it that h files are header files and c files are C files. Header files include all the function prototypes and .c files have the actual code.

The first file we make will be our general include file with functions like random(). All that goes in general.h is:

long random(long);

#include "general.c"

and in general.c we put in the real random function. If it doesn't seem worth the effort to make a separate file just for one function thats understandable, but in a couple

chapters it will be worth the effort.

The difference between include <general.c> and #include "general.c" is that "" tells the compiler to look in the current directory for that file. <> tells the compiler to look

in the include directory. Eventually you might end up with pcx.h, jpeg.h, sprite.h, 3d.h, mouse.h etc.

 Bits, Bases, Advanced C and Computer

 Architecture

This is a mentally intense chapter. Infact it is so intense you wont do any programming just so that you can concentrate on this chapter's ideas. Sound scary? It just gets

worse!

Thats a pretty good introduction. :)

Base 10

We count in base 10, or decimal. Base 10 means there are ten possible values before we require a new digit (0-9 for those not familiar with our number system. hmm...) Is

there other bases? Such as base 3? You bet, (although I know of no use for base 3). In base 3 to count to ten you would have:

0

1

2

10

11

12

20

21

22

100

In base three there are only three digits-0,1,2. So as soon as you run out of digits you simply start in the next column. Not to tricky a concept. Its kind of hard to quickly

convert 2121 to base 10, but fortunatly we wont need to do things like that.

The reason you need to know there are other bases than 10 is because computers don't use base 10 (in the 50s I belive they tried to build computers which worked with

base 10 but I don't know if they ever actually built one. If they ever did manage to make one, it wasn't what you would consider a success). Computers use binary (base 2).

So rather than counting on your fingers simply count on your hands! Here is how you count to 8 in binary.

0000=0

0001=1

0010=2

0011=3

0100=4

0101=5

0110=6

0111=7

1000=8

Each digit is called a bit, it holds 0 or 1. The reason only two values are used is because it is very easy to build electronically. A switch in memory will either have 5volts

flowing through it (1, on, and true) or it will have only a little juice flowing through it (0, off, and false).

You'll notice that with three digits it is possible to hold eight values (0-7), which is 2 to the power of three.

Exercise

Since this chapter is about math, I might as well set this up like text book homework! :) I wont bother giving you the answer because I assume you are all using Netscape in

Windows to read this. Windows comes with a calculator. If you turn the view to scientific you will be able to check all the answers youself. If you enter 35 in decimal (base

10) it can convert it to hexadecimal (base 16), octale (base 8), and binary (base 2) very easilly.

1) How many possible values can you have with 8bits? 16? 24? 32?

2) Without using the calculator other than to verify your answers convert the following into binary:

15

18

129

200

3) Without using the calculator other than to verify your answers convert the following into decial:

00000101

10000000

10000101

bits, bytes, and paragraphs

A bit holds 0 or 1. A nibble (rarly used) is 4 bits (0-15). A byte is 8 bits (0-255. Hey, a char!). A word is 16 bits (0-65,535). A dword (AKA a double word) is 32bits (incase

you haven't picked up on the pattern here it is. A quadword is 64bits. I don't know what 128 bits is. A kilobyte is 1024bytes or 8192 bits. A paragraph is 64K, 65,536 bytes,

or a lot of bits.

Often instead of char, short, and long coders use byte, word, and dword.

Binary tricks

Whats a really fast way to see if a number is odd or even? You could use %2 which will give you a remainder of 0 or 1, or you can use a bit wise operator. When you look at

the numbers 0 to 7 you will notice that the value in the last digit alternates.

000

001

010

011

100

101

110

111

Try the following code:

for(loop=0;loop<20;loop++)

if(loop&1) printf("%i is odd\n", loop);

else printf("%i is even\n", loop);

& means AND. And works like this:

0000 1111

&

0001 0001

----- -----

0000 0001

You can probably figure out why there is only a 1 in the last digit, because that is the only digit with a 1 in both the above numbers in the same place.

There are other bitwise operators such as | (OR).

0000 1111

|

0001 0001

----- ------

0001 1111

As you can see it only takes a single one to make a one in the final result.

That was inclusive or, there is also exclusive or (XOR) which is invoked with the ^. The only requirement for regular oris that one be true. With xor the requirement is ONLY

one can be true. If both are true then xor evaluates to false.

0000 1111

0001 0001

----- ------

0001 1110

Another is the NOT operator, the ~. The not operator is not used for comparisons like the previous operators, it is used on a number to change it. ~effectivly reverses

everything.

0001 1111

----- ------

1110 0000

The final bitwise operators we will use are the << and >>. These are the most useful. << shifts everything to the left and >> shifts everything to the right.

Try the following code:

char a;

a=7;

a=(a<<1);

printf("%i",a);

The above code would result in a 14 on the screen. Here is what happens at the computer level.

a=00000111;

then everything is shifted one position to the left.

a=00001110;

Shifting 1 space is the same as multiplying by 2 (2^1). Shifting two spaces is the same as muliplying by four (2^2). Pretty easy to figure out what a shift of 3 spaces will do.

If you shift to the right instead of left you divide instead of multiply.

What happens we had 01000001 (65) and shifted it two left? We would have 00000100 (4). The 1 on the left side just gets puched off the edge. Once its over the edge, its

gone and is never comming back. With a char, not an unsigned char if we shift it one space 65 will become -126 (10000010).

The left most digit is used to keep track of the sign of a number. This is why unsigned numbers can hold values twice as high. If you need to know if a number is negative or

positive you can use the same trick as seeing if it is odd or even.

The reason it is important to know about bit operators is that they are much faster than other operators such as multiplication. If you can you should use a bit wise operator

when you want the best performance. Its also nice to know how the computer works.

Base 16

You should be able to guess how to count to 22 in base 8. What about base 16?

1

2

3

4

5

6

7

8

9

Oh no, we've run out of digits!

Well we need a single digit which will have the same value as 10. Computer scientists fortunatly choose the alphabit rather than greek or some other crazy unfamiliar

system for the missing digits.

8

9

A (10)

B (11)

C (12)

D (13)

E (14)

F (15)

10

11

12

13

14

15

16

You will see a lot of numbers in base 16 when dealing with computers, such as the address of things like your com port for your modem, 2E8 etc. You can tell a number is

base 16 not decimal by a couple different methods. The most obvious give away is the number has letters in it (well.. duh!). You will see numbers such as 101H or 101h. H

tells you the number is in hexadecimal (base 16). Other times the number will start with a 0x such as 0xA0000 or start with a $ such as $A0000. This will usually be your

only way of telling what base the number is in.

done!

Well almost. This chapter was just to prime you for everything else. If all you don't understand base16 or bitwise operators perfectly, don't worry, it will become a lot more

clear once you actually have to use them. All that you need to get from the above is a basic idea so when you encounter them for the first time you wont be lost. When we

start on grafx there is no sence diluting the lessons with abract ideas like different bases.

The rest of C

The next few paragraphs are going to summerize the rest of the C language. Theres not much left, and nothing that is essential to making games.

union

A union is almost the same as a struct. The only difference is each field of a struct begins where the last field ended in memory. With an union all the fields begin in the

same spot. If you had a char, short, and long in a union you could access the first byte of the short and long by changing the char. Changing the short would change the

char and half of the long and changing the long would change it all. We don't really have much use for these in C.

extern

When you are using multiple files extern is used if the variable is an external one. This means the variable is declared elsewhere, and your variable is actually referring to

this variable.

static, auto, volatile

You'll have to check your help file for deffinations of those.

sizeof

This returns the size of a structure. It's needed to malloc a struct. If you had a struct a you would use it with malloc in the following way:

Array1=malloc(6*sizeof(strctA));

That would give you an enough memory for 6 elements of strctA in Array1.

goto

goto is almost like calling a function. When you call a function the current function stops and the function you called is processed. When the function is completed the

previous function contiues processing. With a goto you don't return anywhere, you just jump all over your code. This leads to very poor code design. goto is essentually

useless.

register

This word is fairly useless, however its concept is extremely important.

The place with the most storage connected to your computer could be considered the internet (pretty much infinate storage), but its probably pretty slow at a maximum of

33.6 unless you are lucky and have a ISDN or cable connection, but I don't think many of us have those in our homes. Next you can get CDROMs filled with stuff from FTP

sites which is much faster than the modem, but there's not as much storage on those CDRom's(650megs per each cd you have, probably 20 CDs so about 13 gigs). Your

harddrive would be faster than those cdroms (only 5-.5 gigs), but you probably don't have as much stuff on it as all the cdroms you own. Even faster than your harddrive is

your ram (only 8-32), which of course can't hold near as much data as your harddrive. Whats faster than your ram? You L2 cache (only 512 or 256K). When your CPU

memory it gets copied into the cache. Once you have accessed something it will remain in cache until something newer takes its place. When you try to read memory it

will check to see if its sitting in the cache first. If it is it uses that. Even faster and smaller than the L2 cache is the L1 cache (between 2K and 32K), which is built right into

the CPU and is much faster than even the L2 cache. Finally we get to the regester. It is again much faster than the L1 cache, but much smaller. Infact there are only four

general purpose regesters (new CPU designs such as the PowerPC give you 32 general purpose regesters!). A regester on 16bit chips like the 8088 and 286 holds 2bytes.

On 32bit chips like the 386, 486, Pentium, and P6 they hold 32bits. A register is the fastest thing in your computer.

A register is the only thing which the CPU can directly manipulate. When you say a=8; in C you don't actually change the value of a directly. First the value eight is put in a

register. Then it is stored in the memory location a. If you want do something like a=b; you end up putting the value of b in a regester and then storing that value in a. The

keyword register will try to reserve a register for holding a value. register is only used for optimizing purposes. However we should hope that our compiler is smart enough

not to need to be told that. Also register does not mean that variable will be put in a regester, it only means the compiler is instructed to TRY. I belive most modern

compilers ignore this word.

The names for the four general purpose regesters on x86 chips are EAX, EBX, ECX, EDX. These are how they are divided up.

********|********|********|********

|---|

 EAX

|---------------------|-----------------------|

 AX

|---------------------|-----------|-----------|

 AL AH

EAX is the full 32bit regester which is divided into half with the lower 16 bits called AX (the other part is not accessable by itself for some reason. Why? Only Intel knows.).

AX is further divided into two parts. AL (the lower bits) and AH (the high 8 bits).

Here is some more Intel bashing. When you look AL and AH are out of order! The first 8 bits of a 32bit number are in the first quarter of EAX. The next 8bits are in the

second quarter. Then the third 8bits are in the last quarter and last 8bits are in the third quarter!

If you read a file which came from an Amiga or Macintosh (which were based on the Motorola 680x0 chips) which stored short integers in the conventional way so you would

read 1 as 00000000 00000001. When our anoying intel chips read this number as 00000000 00000001 it really has the value of 512 because the number is really 00000001

00000000 in memory!

Off topic: Which method of storage is better? I belive the way Motorola did it is. There was a big debate about this a long time ago. People were trying to promote their

method and the other guys said their method was better. Remind you of those stupid avocacy "debates" on usenet? "Saturn is better than PSX"/"PC is better than

Mac"/"Unix kills NT"/"UltraSound vs SB" Its all stupid! Do people really think anybody is ever going to say "Hey, you're right. My system is infirior and I have been a fool for

liking it" Back then somebody got fed up with the stupidity and labled the two factions Big Endians and Little Endians. This comes from a stroy where one group of people

claimed it was better to eat a hardboilded egg by cutting the pointy end off. The other people belived it was better to have the pointy end facing down and cut off the blunt

end. People got so attached to what way was better to eat a hard boiled egg that the two countries went to war. I can't remember which Endians liked to eat the egg which

way, but thats the story. That name stuck to those people and their preferred method of building microchips. So now the x86 line of chips is Little Endian and PowerPC and

other chips which do it the natural way are referred to as Big Endian.

Fortunatly when we shift bits, it shifts them in the "number", not how they are stored in the regester.

That is everything there is to know about the C language. While I'm talking about computers, I'll finish be explaining the heap and the stack briefly. In the data segment of

your computers memory there is two things, at one end there is the stack and at the other is the heap. If they ever grow enough to meet you will run out of memory. When

you declare a variable or array it is allocated in the stack memory. When you allocate memory in that takes heap space.

With the stack things the first things on are the last things out (like a stack of plates). With the heap things can get messy, like a heap of clothes. You must remember to

always free allocated memory, but you don't need to worry about arrays because they are on the stack.

 Enter the World of Grafx

Finally we are at the grafx part! The rest of these chapters are going to be a breeze compared to the first ones, they are all going to be a lot smaller, and you will see more

results from what you learn. The next few chapters the code I am going to give isn't going to be perfect. I have to be honest with you here, its going to be slow. We aren't

going to use asm for a while because there are more important things to cover right now. We are going to build slowly here. First we will learn how to get the computer into a

grafx mode rather than text mode, and then how to put pixels on the screen. We'll build from putting a single pixel on screen to shapes and then to making sprites . Once

you understand a technique such as drawing a sprite I'll show you different ways to do it, each with different advantages. But all will have one goal, to be faster than any

other way possible. Now that you know whats going to be happening we'll get started.

Mode 13h

We are going to start with video mode 13h (quick memory test, whats 13h in decimal?). You are probably familiar with mode 13h because you see it in pretty much every

game ever made, it is 320x200 with 256 colors on screen. This is the only 256 color video mode built into VGA cards, in higher modes such as 640x480 we are limited to 16

colors. If you have played Quake (who hasn't?) you will see that there are 11 video modes with 256 colors, even if all you have is a VGA card. It is possible to reprogram the

VGA card so that mode 13h is combines with other modes. These are not standard, and are diffitcult to use. They do however offer some advantages over mode 19 other

than just higher resolutions. These other 256 color modes on VGA cards are referred to as Mode X. We'll cover those eventually.

Since we are going to need to learn assembly eventually to make grafx as fast as possible, the first grafx function that I'll give you will be in assembly! Watcom and DJGPP

(and every other compiler) have their own styles for doing inline assembly so don't try to use DJGPP inline assembly in Watcom or Turbo C or vice versa, you'll just get

errors.

It takes just two commands to change the video mode, they are:

mov eax, 0x13

int 0x10

which can also be written as

mov eax, 19

int 16

for those who haven't fully grasped how to use hexa decimal. From this point on I wont use anymore decimal numbers for things which are normally in hex.

In the last chapter we learned there were 4 general purpose regesters which can hold 32bit values. These can be thought of as variables when programming in assmebler.

The first thing we do is store (mov or move)13h in regester eax. This is pretty much the same as x=19; in C.

Offtopic:

 Interupts are used by things like your sound card, mouse, keyboard, printer, etc. These force the computer to stop doing whatever its doing and deal with the

 interupt. Its almost a form of multitasking. Those are hardware interupts. This is what your sound card and modem use. The other type, software interupts, you

 probably aren't familiar with.

 A software interupt isn't really an interupt because it doesn't interupt anything. When you call a software interupt you are really calling a function. The reason there

 are software interupts instead of calling a function stored at a certain place in memory is to make things easier for Mircosoft, IBM, and Novell to update DOS (yes,

 IBM has its version of DOS which is different than MS-DOS called PC-DOS and Novell has (had?) one called DR-DOS. Whats the difference? There are a couple

 differences, but basically nothing). When MS recompilles DOS chances are that none of the functions would be in the same place in memory, which would mean

 when a program made to run in DOS 1.0 tried to call a function the computer would probably crash because a totally unrelated function or piece of data could be in

 that place of memory. This is why we have software interupts, they let the makers of DOS and BIOS update the functions without breaking old programs. Now back

 to grafx.

To call those two assembly commands we can make a separate .asm file and include that, or we can use inline assembly. Since we only are going to have a single

function which uses assembly we'll just use inline assembly.

That bit of assembly you saw would work fine as part of a .asm file for Turbo C, or a lot of other compilers, but DJGPP inline asm is a bit different. Take a look at the

following and compare it to the pure assembly above. A bit more nasty, eh?

void SetMode(long Mode){

__asm__(" movl %0, %%eax\n

int $0x10"

:

: "a" (Mode)

: "eax");

}

__asm__ is used to start the assembly section.

Instead of mov eax, 10h DJGPP uses AT&T syntax which is backwards from Intel syntax (but makes more sence when you think about it) so it the source and destination

operands switch places to mov 10h, eax.

With DJGPP you can't just use mov, it has to be movl for move long so the code now changes to movl 10h, eax.

In DJGPP inline asm operands (operands are things which operators operate on. Yes, that is the most crypic thing I've ever said. Let me try that again, this time by

example. Operators are things like mulitply, addition, bitshifting, etc. Those functions are nothing without input. The things you inputs you give are called operands. In 5+3

the + is the operator and 5 and 3 are the operands) some operands must have prefixes. Regester operands must have a % prefix. Immediate operands must have a $.

Whats an immediate operand? A constant. In your code when you have something such as 23 it must be precided by a $. Memory locations don't need prefixes. For more

information see the DJGPP Quick Asm Programming Guide. Since we want to be able to use the same function to change to different modes (we don't want to hard code it

to only change to grafx mode and then write a different routine to switch to text mode) we need to be able to interact with variables we pass to it. The first variable can be

referred to as %0, the second as %1 etc. Because we are interacting with our C variables we need to use two % instead of one infront of the regesters. So finally it changes

from movl 10h, eax to mov%0,%%eax.

DJGPP uses \n to tell the compiler that the next line isn't a new line, its still part of the same line. When you program inline assembly in DJGPP it all needs to be on one

single line. Instead of calling int 0x10 we must call $0x10. In assembly there are different ways to address things.

The next line is the input field. The "a" (Mode) puts the value in our C variable Mode which we created when we called the functioning into the eax regester.

The next line lists the regesters which were modified. We need to tell the compiler what regesters we changed because otherwise it will assume that they have the same

thing in them as they did before we called the function! That obviously can lead to problems if the compiler doesn't know we changed a value. At the end we wrap it all up

with a); like a regular function.

Pixels

Pixels (PIcture ELements) are pretty important for grafx. We had better know how to put on on screen! In mode 13h we have 320 of them on the X axis and 200 of them

down the y axis. Each one can be one of 256 different possible colors.

In mode13h pixel 0,0 is pixel 0, the next on over at 0,1 is pixel 1 etc. With computers the screen is a upside down version of a normal graph. Instead of 0,0 being at the

bottom left, its at the top left.

The screen is stored in memory in a linear fashion. When you are at the end of line the first line (the 320th pixel, 319,0) and move to pixel 321 you move to the location 0,1

on the screen, just like wrapping around from one line to the next in a word processor. The screen is really nothing more than one big array of bytes.

To represent this we will make a pointer to the start of the video memory in mode13h (in text mode (mode 3) the start is 0xB8000) by typing byte *VGA=(byte *)0xA0000.

 Note:

 From this point on I'll be using byte, word, and dword quite often. A byte is a 8bit value (unsigned char), a word is a 16bit value (unsigned short) and a dword is

 a 32bit value (unsigned long). You can make your compiler understand byte, word, and dword by using typedef or #define. typedef is a better way.

Now to access the screen you just treat it like an array. VGA[0]=5; would put color into the first pixel on the screen. Well that is how it would work in a perfect world. We

however are programming for a PC. The first problem is we are in protected mode which means we can't directly access the video memory. So first we need to disable

memory protection. The next problem is 0xA0000 is a real mode address. Do to the differences between protected mode and real mode you need to add

__djgpp_conventional_base to the real mode address. This value is not constant. So finally in order to write to the first pixel we need to write:

__djgpp_nearptr_enable(); /*disable memory protection */

VGA[0+__djgpp_conventional_base]=5;

__djgpp_nearptr_disable(); /* re-enable memory protection */

We will also need to include:

#include <go32.h>

#include <dpmi.h>

#include <sys/nearptr.h>

This lets write a function which lets us write a pixel to any place on the screen. It will take three parameters, the horizontal position, the vertical position, and the color to

chage that pixel to.

void Pixel(x,y,Color){

 __djgpp_nearptr_enable();

 VGA[y*320+x+ __djgpp_conventional_base]=Color;

 __djgpp_nearptr_disable();

}

As some sample code here is how we would fill the screen with each color:

#include <go32.h>

#include <dpmi.h>

#include <sys/nearptr.h>

typedef unsigned char byte;

byte *VGA=(byte *)0xA0000;

void SetMode(long Mode){

 __asm__("

 movl %0, %%eax\n

 int $0x10"

 :

 : "a" (Mode)

 : "eax");

}

void Pixel(x,y,Color){

 __djgpp_nearptr_enable();

 VGA[y*320+x+__djgpp_conventional_base]=Color;

 __djgpp_nearptr_disable();

}

int main(){

 int x,y,color;

 SetMode(0x13);

 for(color=0;color<255;color++)

 for(y=0;y<200;y++)

 for(x=0;x<320;x++)

 Pixel(x,y,color);

 SetMode(3);

 return 0;

}

Exercise

1) Now that you know how to put some pixels on the screen come up with a routine to draw lines. And make them red so they look like a Virtual Boy :) This will be part of

our first 3D engine. You'll find when you try to draw something like a box on the screen it will be slow and you wont be able to get smooth animation. We'll fix those in the

next few chapters.

2) Once you are comfortable writing to memory, write a routine simular to printf, but can output text to any part of the screen. Do this in textmode. The address where video

memory starts in text mode is 0xB8000.

Things are getting a little harder, aren't they? It should take you a little while to figure out 2 because you probably don't know anything about text mode. You may want to try

writing only a single value to the top left corner and seeing what happens. Then try writing to the the next character over.

answer for part 2:

 Each character is a word, not a byte. The first byte or each character is its color (remember ANSI color on BBS's? Anybody ever used a BBS, or are you all too

 young to know about those in this age of the internet?), the second half is the character.

