
Custom Menus
Introduction:

Have you ever noticed how menus created with Menu( look crappy and you can only have seven options with a limited amount of text?  In this tutorial, we will learn how to make real, professional-looking menus, and we’ll also learn something about program structure so that we can minimize the number of Lbls and Gotos that we use.  First we’ll start out with some simple numbered menus and then we’ll get to creating menus that use arrows to select options.

Sample code:




Output:
[image: image1.png]:ClrDraw:FnOff:AxesOff
:While 1

:Text(0,0,“DO  WHAT?

:Text(16,0,“1) OPTION  1

:Text(24,0,“2) OPTION  2
:Text(32,0,“3) OPTION  3

:Text(40,0,“4) QUIT

:0→Z

:Repeat Z>91 and Z<95 or Z=82

:getKey→Z




Output:
[image: image2.png]:End

:ClrDraw

:If Z=92

:Text(0,0,“THIS IS OPTION 1

:If Z=93

:Text(0,0,“THIS IS OPTION 2

:If Z=94

:Text(0,0,“THIS IS OPTION 3

:If Z=82

:Return

:Pause

:ClrDraw

:End
Explanation:

First, the graph screen is set up and our menu is displayed using Text( commands.  A Repeat loop then waits until a key is pressed (specifically keys [1], [2], [3], or [4] because the keycodes of those keys are 92, 93, 94, and 82, respectively).  After a key is pressed that corresponds to one of the options, the loop ends and If statements are used to execute commands based on the key that was pressed.  If one of the first three options was selected, the program loops up to the main menu.  If your program is complex, you could always use If/Then statements instead of just If statements or you could jump to labels (If Z=92:Goto 1) instead of encasing the whole program in a massive While loop.

Sample code:




Output:

[image: image3.png]:ClrDraw:FnOff:AxesOff

:0→Xmin:94→Xmax

:-62→Ymin:0→Ymax

:While 1

:Text(0,0,“DO  WHAT?
:Text(16,15,“OPTION  1

:Text(24,15,“OPTION  2

:Text(32,15,“OPTION  3

:Text(40,15,“QUIT

:0→Z:-19→A

:Repeat Z=21 or Z=105


Output:
[image: image4.png]:getKey→Z

:If Z:0→B

:Line(5,A,11,A,B

:Line(10,A+1,10,A-1,B

:Line(9,A+2,9,A-2,B

:1→B

:A-8(Z=34)(A>-43)+8(Z=25)(A<-19→A

:End

:ClrDraw

:If A=-19

:Text(0,0,“THIS  IS  OPTION  1

:If A=-27

:Text(0,0,“THIS  IS  OPTION  2

:If A=-35

:Text(0,0,“THIS  IS  OPTION  3

:If A=-43

:Return

:Pause

:ClrDraw

:End

Explanation:

This code does the same exact thing as the first, but it uses an arrow instead of numbered options.  After the menu is displayed, 0 is stored to Z (which will serve as our keypress-detecting variable) and -19 is stored to A (-19 is the initial value of the vertical coordinate of our arrow).  A Repeat loop will hold up the program until either [2nd] or [ENTER] is pressed.  Look at the chunk of code beginning will If Z and ending with 1→B.  The Line( commands will either draw or erase our arrow, depending on the value of B.  If a key is pressed (such as an arrow key), 0 will be stored to B, so the arrow will be erased (remember that the optional fifth argument of a Line( command determines whether the line is on or off).  Immediately after the three line commands, one is stored to B.  This means that the arrow will use the Line( commands to be redrawn on every loop as long as a key is not pressed.  Got how the arrow works now?  The next line, :A-8(Z=34)(A>-43)+8(Z=25)(A<-19→A, re-stores the vertical coordinate of our arrow (variable A) depending on if an arrow key was pressed and the current position of the arrow.  If up is pressed, the arrow will move eight pixels up as long as it is not already at the top option.  If down is pressed, the arrow will move down by eight pixels as long as it is not already at the bottom.  After the loop is ended by pressing [2nd] or [ENTER], certain commands are executed depending on what the vertical coordinate of the arrow was.  Pretty ingenious, eh?  Like the first program, this one loops back to the main menu with a While loop. 

Sample code:

:ClrDraw:FnOff:AxesOff

:Text(0,0,“HOW  MANY?”
:0→A
:Repeat Z=21 or Z=105
:getKey→Z

:A+10(Z=25)(A÷19)-10(Z=34)(Aù10)+(Z=26)(A÷199)-(Z=24)(Aù1→A

:Text(0,35,A,“[four spaces]

:End

Output:

[image: image5.png]
Explanation:

This is a fairly simple routine that allows numerical user input on the graphscreen.  Variable A will serve to store our value and Z will be used to store keypress.  The value of A is increased by ten when up is pressed, decreased by ten when down is pressed, increased by one when right is pressed, and decreased by one when left is pressed.  I set limits on what the value of A can be (0÷A÷200), but you could alter or abolish these limits based on your purposes.
Conclusion:

That sure was fun!  Now you should be able to make more impressive-looking games.  The last bit of code can be particularly useful because Input only works with the homescreen, not the graphscreen (well, technically it does work with the graphscreen, but it does something completely different and graph-related).  Numbered menus are the easiest way to go and take up less memory, but personally I prefer to use menus with the arrow.  Hopefully you understood everything.  I tried to explain it the best I could, especially in the second code.  The next tutorial will be a game: Snake.  It should be a good break for you (hopefully) and it will be a good break for me too because all I have to do is parse the file, then copy and paste(.
©2006-2007 by MDR Falcon  /  www.geocities.com/revolution2032/games

