Strings
Commands:

→

Used for storing to a string

length(

Returns the length of a string

expr(

Returns the value of an expression in a string

sub(

Returns a subset of a string

inString(

Returns the position of character(s) in a string

StringåEqu(

Stores a string to a Y-VAR

EquåString(

Stores a Y-VAR to a string

DispGraph

Displays the graphscreen

Trace

Allows a graphed function to be traced

Using the Commands:

There are only six command tokens that deal solely with strings, so I just decided to include them all. A string is a variable that stores a set of characters, or text. Unfortunately, there aren’t as many commands to manipulate strings as there are for lists or matrices, so sometimes strings aren’t as useful as they could be. You can access the string variables by pressing [VARS] and scrolling down to “7:String…”

To get the length of a string (which can be particularly useful when accessing its characters using a For(loop), you would use none other than length(:

length(string

If you want to use a string to get numerical data from the user, you can get the value of an expression contained in a string by using expr(:

expr(string

To access a specific character or characters from a string, use sub(:

sub(string,begin,length

If you want to know the location of an element in a string, use inString(:

inString(string,substring,[start]
Strings can be very useful if you are making a graphing program. To change a string into a Y-VAR, use StringåEqu(:

StringåEqu(string,Y-VAR

And to change a Y-VAR into a string, use EquåString(:

EquåString(Y-VAR,string

And finally, to display the graph, use DispGraph.

Sample code:

Output:

[image: image1.png]:ClrHome

:Disp “ENTER YOUR NAME.

:Input “FIRST:”,Str1

:Input “LAST:”,Str2

:Str1+“ “+Str2→Str1

:ClrHome

:ClrDraw

:length(Str1)-1→A

:Text(0,0,“HELLO, ”,Str1

Output:
[image: image2.png]:Text(7,0,“YOUR NAME CONTAINS ”,A

:Text(14,0,“LETTERS.

:Pause

:ClrDraw

Explanation:

First the program asks you to enter your first and your last name, which are stored into strings 1 and 2, respectively. The strings are concatenated with a space in between them and the length minus one (for the space) is stored into variable A. Finally, a message containing your name and the number of characters in your name is displayed on the graphscreen.
Sample code:

Output:
[image: image3.png]:ClrHome

:Input “Y=”,Str1

:StringåEqu(Str1,Y1
:ClrDraw

:AxesOn

:ZStandard
:DispGraph
:Trace

Explanation:

First, the user is prompted to input an equation, which is stored to a string. The string is then converted to a Y-VAR and graphed. AxesOn turns the graphing axes on and ZStandard sets the Xmin to -10, the Xmax to 10, the Ymin to -10, and the Ymax to 10. Trace allows the user to trace the graph with the arrow keys or end the program by pressing [ENTER]. If you were making a real graphing program, you could use some Inputs to allow the user to store window ranges into the window variables and also allow graphing options like turning the axes, coordinates, and grid on or off.
Sample code:

Output:
[image: image4.png]:ClrHome
:While 1
:1→B
:While B≠0
:Input "BIN: ",Str1
:0→B
:For(A,1,length(Str1
:sub(Str1,A,1
:If Ans≠"1" and Ans≠"0
:1→B
:End
:End
:0→Z
:For(A,1,length(Str1
:expr(sub(Str1,A,1
:Z+Ans*2^(length(Str1)-A→Z
:End
:Disp Z
:End
Explanation:

First of all, be sure that you enter everything exactly as it is above or the program won’t function properly. So, what does this program do? Why, it converts binary to decimal of course! But before we can understand how the program works, we must understand how the conversion works, so bust out a pencil and some paper…

In decimal, each digit stands for a power of 10, right? So then…

2032 = 2x10^3 + 0x10^2 + 3x10^1 + 2x10^0 = 2032
In binary, each digit stands for a power of 2. So then…

111binary = 1x2^2 + 1x2^1 + 1x2^0 = 7decimal

110101binary = 1x2^5 + 1x2^4 + 0x2^3 + 1z2^2 + 0x2^1 + 1x2^0 = 53decimal
Got it? So in our program, the user is asked to input a binary number, which is stored to Str1. A For(loop checks to make sure each element of the string is either a 1 or a 0. If not all the elements are 1’s and 0’s, one is stored to variable B so that another number can be asked for. Now it begins to get more complicated. Variable Z will act as our accumulator variable to calculate the value of the decimal equivalent of the number in Str1. A For(loop will be used to access each element of the string, take its value, multiply it by the appropriate power of two, and add it to the accumulator variable, Z. “:For(A,1,length(Str1” creates a For(loop that will be repeated a number of times depending on the number of elements in the string. The next line, “:expr(sub(Str1,A,1”, takes the Ath character from the string (“sub(Str1,A,1”) and then evaluates it using expr(, treating it as a numerical value. “:Z+Ans*2^(length(Str1)-A→Z” takes the value of the accessed element and multiplies it by a power of two depending on which element the For(loop is on and adds it to the accumulator variable, Z. Try some values: 110b = 6d, 111b = 7d, 101010b = 42d, and 11111110000b = 2032d (that last one was seven 1’s and four 0’s, just to clarify).
Sample code:

:ClrHome

:Input “NAME: ”,Str1

:“ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz→Str2

:“abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ→Str3

:“[one space]”→Str4

:For(A,1,length(Str1

Output:
[image: image5.png]:inString(Str2,sub(Str1,A,1→Z

:Str4+sub(Str3,Z,1→Str4

:End

:sub(Str4,2,length(Str4)-1→Str4

:Pause Str4

Explanation:

Finally I have found a real use for inString(! What this program does is convert lowercase to uppercase and vice versa. First the program will prompt you to enter your name (or any other string of characters), which will be stored to Str1. Next, the uppercase and lowercase versions of the alphabet are stored into Str2 and Str3, but notice how the uppercase letters come first in Str2 while the lowercase letters come first in Str3. On the next line, exactly one space is stored to Str4. Inside the For(loop is where the real magic begins. The loop will iterate a number of times equal to the length of Str1 because one letter will be converted on each loop. The next line of code stores a value into variable Z using inString(. Essentially what this line does is search Str2 for the letter that is currently being converted in Str1. For example, if the program was converting G from Str1, it would search Str2 for the first occurrence of an uppercase G, then store its location within the string to variable Z. In the following line, “:Str4+sub(Str3,Z,1→Str4”, the corresponding character from Str3 is added to Str4. So if the program was converting an uppercase G, it would take the G’s location in Str2, which happens to be 7, and add the 7th character of Str3 to Str4, which is a lowercase g.
After the loop finishes converting the whole string, the first character of Str4 (which is just a space that we stored earlier) is removed. So why did we place this space in if it will just be removed later? If we hadn’t, the calculator would have given us an error. For some odd reason, the TI-83+/84+ won’t allow you to concatenate an empty string. Therefore, we have to store something to Str4, add our data onto the end of it, then remove what we don’t want. I know, it’s stupid, but it’s just one of those little things that you have to work around. …And of course, the last line of the program outputs the converted string.
Conclusion:

Strings are used for storing text. If you’re clever, you can use them for mathematical uses with the invaluable expr(command. Remember, use sub(to access a specific set of characters from a string. Congratulations! You’ve now learned all the basics of TI BASIC (no pun intended)! Next we’ll start on some more specialized tutorials, like custom menus and animation. Go to “Custom Menus.”
©2006-2007 by MDR Falcon / www.geocities.com/revolution2032/games

