Scrolling Homescreen Maps
Introduction:

Now we will learn about maps that can actually scroll! This is a pretty long tutorial and gets kind of complicated, so please be patient. The methods of scrolling provided here are only a few of a number of ways to scroll maps on the homescreen. Most methods are probably similar to those presented here, but if you go somewhere else, you will most undoubtedly find some variations. I can’t promise you that my way is the most efficient, but it does seem to work pretty fast for BASIC. And remember way back in Tutorial 10 when I said to use matrices for maps? Well, that only seems to work for static maps, not scrolling maps, so we will be using strings and Output(. Here we go!

Sample code:

:“////////////////////////////////→Str1
Store 32 slashes to string 1
:“/ / ---- / /→Str2

/,5 spaces,/,2 spaces,4 dashes,9 spaces,/,8 spaces,/
:“/ / ---- / /→Str3

/,5 spaces,/,2 spaces,4 dashes,9 spaces,/,8 spaces,/
:“/ ////// /////// /→Str4

/,5spaces,6 slashes,4 spaces,7 slashes,8 spaces,/

:“/ /→Str5

/, 30 spaces, /

:“/ //// //// /→Str6

/,4 spaces,4 slashes,12 spaces,4 slashes,6 spaces,/

:“/ /→Str7

/, 30 spaces, /

:“////////////////////////////////→Str8
32 slashes
:1→A

:length(Str1)-15→L
:While 1

Output:
[image: image1.png]:Output(1,1,sub(Str1,A,16

:Output(2,1,sub(Str2,A,16
:Output(3,1,sub(Str3,A,16
:Output(4,1,sub(Str4,A,16

:Output(5,1,sub(Str5,A,16
:Output(6,1,sub(Str6,A,16
:Output(7,1,sub(Str7,A,16
:Output(8,1,sub(Str8,A,16
:getKey→Z

:A+(A<L)(Z=26)-(A>1)(Z=24→A

:End

Explanation:

In the first section of code, we store each line of the map to a separate string. You can use whatever characters you want wherever you want; you don’t have to use mine exactly. This map is 8 rows by 32 columns, but yours can be whatever length you want as long as all eight strings are the same length as string 1. After the map is stored, we store 1 to variable A. Variable A will keep track of the place in the string that characters will begin to be displayed from using sub(. On the next line, we store a value to variable L based on the length of string 1; this will tell the program when the right edge of the map is reached. Inside the While loop, a portion of each string is displayed using Output(. The portion of the string that is displayed is 16 characters long and starts at the Ath element. (You may need to refresh your memory on sub(by looking back at the Strings tutorial). After the map is output on the homescreen, the value of A is changed if the left or right arrow key is pressed, scrolling the map on the next loop.

What if you wanted to display a smaller portion of the map? All you have to do is change a few numbers…
Sample code:

Output:
[image: image2.png]:“////////////////////////////////→Str1
:“/ / ---- / /→Str2
:“/ / ---- / /→Str3
:“/ ////// /////// /→Str4
:“/ /→Str5
:“/ //// //// /→Str6
:“/ /→Str7
:“////////////////////////////////→Str8
:1→A

:length(Str1)-15→L
:While 1

:Output(1,5,sub(Str1,A,8

:Output(2,5,sub(Str2,A,8
:Output(3,5,sub(Str3,A,8
:Output(4,5,sub(Str4,A,8
:Output(5,5,sub(Str5,A,8
:Output(6,5,sub(Str6,A,8
:Output(7,5,sub(Str7,A,8
:Output(8,5,sub(Str8,A,8
:getKey→Z

:A+(A<L)(Z=26)-(A>1)(Z=24→A

:End

Explanation:

Now only an 8x8 portion of the map is displayed, and it’s centered! All we did was change a few numbers in the Output(statements: the column argument changes from 1 to 5 and the length argument in sub(changes from 16 to 8. It couldn’t be easier!

Sample code:

:“/////////////////////ss/sssssssssss/sss//ss/ssss/s/ssss/sss//ss//////s//////sss//ssssssssssssssssss//ss//////s//////sss//ss/ssss/s/ssss/sss//ss/sssssssssss/sss//ss//////s//////sss//ssssssssssssssssss//ssssssssssssssssss/////////////////////→Str1
s = space… Use any characters, but must have 240
:1→A

:While 1

:For(B,1,8

:Output(B,1,sub(Str1,A+20B-20,16

:End

:Repeat Z

:getKey→Z

:A+(0øfPart((A-5)/20))(Z=26)-(0øfPart((A-1)/20))(Z=24→A

:A+20(A<81)(Z=34)-20(A>20)(Z=25→A

:End

:End

Output:
[image: image3.png]
Explanation:

Don’t freak out about the first line. You can enter any characters you want, anywhere you want, but there must be a total of 240. This is pretty much like the previous two codes, but instead of using eight separate strings, we are just combining them into one. Here, our map will be 12 rows by 20 columns, so every 20th character in the string is the beginning of a new line and we must have 240 total characters because 12*20=240. If you want to create your own maps (which you probably will later on), I suggest that you plan first. So bust out some graph paper and a pencil and draw up your map, then go across the graph paper and enter each character one by one into your program. A little planning before will save you from a lot of frustration if you just try to create a map while writing the program.
After storing our map to the string, we store a value of 1 to variable A, which will again serve as our place-keeping variable. Inside the While loop, we use an Output(statement inside a For(loop to access different portions of the string. After a portion of the map is output to the screen, the program loops until a key is pressed. If the right or left arrow key is pressed, the value of A is either incremented or decremented, moving the map left or right by one. If the up or down arrow key is pressed, A is decreased or increased by 20, which essentially moves A to another row, moving the map down or up by one.

When altering the value of A, we use expressions to test A’s value so that the map isn’t scrolled past one of its edges. First, let’s look at “:A+(0øfPart((A-5)/20))(Z=26)-(0øfPart((A-1)/20))(Z=24→A”, which is responsible for horizontal scrolling. “(0øfPart((A-5)/20))” returns 0 if (A-5)/20 is a whole number, so if A=5, A=25, A=45, etc., 0 will be returned and the map will not be scrolled. Likewise, “(0øfPart((A-1)/20))” returns 0 if (A-1)/20 is a whole number, so if A=1, A=21, A=41, etc., 0 will be returned and the map will not be scrolled. Next, let’s look at “:A+20(A<81)(Z=34)-20(A>20)(Z=25→A”, which is responsible for vertical scrolling. If A<81, meaning that the bottom row displayed is not the bottom row of the map, 1 will be returned, allowing the map to scroll (remember, there are 20 characters per row). If A>20, meaning that the top row displayed is not the top row of the map, 1 will be returned, allowing the map to scroll.
Sample code:

:“/////////////////////ss/sssssssssss/sss//ss/ssss/s/ssss/sss//ss//////s//////sss//ssssssssssssssssss//ss//////s//////sss//ss/ssss/s/ssss/sss//ss/sssssssssss/sss//ss//////s//////sss//ssssssssssssssssss//ssssssssssssssssss/////////////////////→Str1
s = space… Use any characters, but must have 240
:1→A

:2→P:2→Q

:While 1

:For(B,1,8

:Output(B,1,sub(Str1,A+20B-20,16

:End

:Output(P,Q,“(
:Repeat Z

:getKey→Z

:Q+(0=fPart((A-5)/20))(Z=26)-(0=fPart((A-1)/20))(Z=24→Q

:P+(Aù81)(Z=34)-(A÷20)(Z=25→P

:A+(0øfPart((A-5)/20))(Z=26)-(0øfPart((A-1)/20))(Z=24→A

:A+20(A<81)(Z=34)-20(A>20)(Z=25→A

:End

:End

Explanation:

This code is similar to the last, except now we have a sprite that can move around the map. Towards the beginning of the program, we add “:2→P:2→Q”, which stores the initial coordinates of the sprite. In our main loop, an Output(statement outputs the sprite on the screen immediately after the map is displayed. The real art of the program comes when we change the coordinates of the sprite. If you look at the expressions that determine whether P and Q can be altered (“0=fPart((A-5)/20)”, “0=fPart((A-1)/20)”, “Aù81”, and “A÷20”), you’ll notice that they are the opposite of the expressions that determine whether the screen can be scrolled (“0øfPart((A-5)/20)”, “0øfPart((A-1)/20)”, “A<81”, and “A>20”). Basically, this means that if the screen is going to scroll, the sprite will stay in the same position on the screen. If the screen is not going to scroll, the sprite will move around the screen. Pretty ingenious, huh?

Ideally, we would want the sprite to be in the middle of the screen as the map scrolled, but modifying our program to do this could seriously compromise speed (but if you know what I’m talking about and find an efficient way to do this, please email me). In the next two codes (once I finish them), we will be adding character detection so the sprite can’t pass through walls, then I will show you how to create maps of any dimension.

Sample code:

:A string containing 360 characters→Str1
For now, use slashes for walls
:1→A
:2→P:2→Q

:While 1

:For(B,1,8

:Output(B,1,sub(Str1,A+24B-24,16

Output map… each row is 24 characters

:End

:Output(P,Q,“(

Can use any character for moving sprite
:Repeat Z
:getKey→Z

Manipulate vertical coordinate of sprite
:P+(sub(Str1,A+24P+Q-1,1)ø“/”)(Aù169)(Z=34)-(sub(Str1,A+24P+Q-49,1)ø“/”)(A÷24)(Z=25→P

Manipulate horizontal coordinate of sprite
:Q+(sub(Str1,A+24P+Q-24,1)ø“/”)(0=fPart((A-9)/24))(Z=26)-(sub(Str1,A+24P+Q-26,1)ø“/”)(0=fPart((A-1)/24))(Z=24→Q

Manipulate place-keeping variable for screen scrolling
:A+(sub(Str1,A+24P+Q-24,1)ø“/”)(0øfPart((A-9)/24))(Z=26)-(sub(Str1,A+24P+Q-26,1)ø“/”)(0øfPart((A-1)/24))(Z=24)+24(sub(Str1,A+24P+Q-1,1)ø“/”)(A<169)(Z=34)-24(sub(Str1,A+24P+Q-49,1)ø“/”)(A>24)(Z=25→A
:End

End Repeat loop
:End

End While loop

Explanation:

This is by far the most complex code we have done yet, so we’ll break it down to analyze it. In the very first line, we need to store a map that contains 360 characters (the map’s dimensions will be 15 rows by 24 columns). For now, just use slashes for the walls because that is what the program will later be checking for. For creating maps, you can download my BASIC MapMaker. If you use BASIC MapMaker, just remember to save the map before exiting the program! Instructions on how to include the map in your own programs are included in the readme for BASIC MapMaker.
Like in our previous sample codes, variable A will be used as a place-keeper for when we scroll the map. The initial vertical and horizontal coordinates of the moving sprite will be stored to variables P and Q, respectively. In the next line, the While statement begins the main loop of the program. After that, a For(loop containing an Output(statement displays the map on the screen. Immediately after the For(loop ends, our moving sprite is output on the screen. You may use any character you want for the moving sprite; it matters not one bit.

Next, we begin a Repeat loop which contains the lines of code that manipulate the variables controlling the sprite and the map. This gets pretty complicated, so we’ll break it down. The main theory behind this code is that if you know the values of the place-keeping variable, A, and the of the moving sprite’s coordinates, P and Q, you can determine where the moving sprite is in relation to the elements stored within the map. Then, you can determine what the elements around the moving sprite are to see if the sprite is trying to move through a “wall” or not.

:P+(sub(Str1,A+24P+Q-1,1)ø“/”)(Aù169)(Z=34)-(sub(Str1,A+24P+Q-49,1)ø“/”)(A÷24)(Z=25→P

This line controls the vertical coordinate of the moving sprite. We can actually break it down further into two parts to analyze it more easily.
+ (sub(Str1,A+24P+Q-1,1)ø“/”)(Aù169)(Z=34)
This part of the line is responsible for determining if our sprite will be able to move down. Remember how inequalities work in TI-BASIC: if you have a condition and it is true, a 1 is returned; if false, a 0 is returned. So really in this bit of code we are testing three different things: (sub(Str1,A+24P+Q-1,1)ø“/”), (Aù169), and (Z=34). Since these three conditions are multiplied together, all three must be true for the sprite to be able to move down. In the first condition, we use sub(to access the character in Str1 at (A+24P+Q-1), which is the character immediately below the moving sprite. If the accessed character is not a slash (which is a wall), then the condition is true and returns a 1. Next, variable A must be greater than or equal to 169 because the map will scroll until it gets to the bottom, then the sprite will actually move down the screen. The last condition is simply that the down arrow key was pressed.

-(sub(Str1,A+24P+Q-49,1)ø“/”)(A÷24)(Z=25
The second half of the line is very similar to the first half, but opposite in direction. Again, we are really testing three different conditions: (sub(Str1,A+24P+Q-49,1)ø“/”),

(A÷24), and (Z=25). In order for the sprite to move up, all conditions must be true. In the first condition, we use sub(to access the character of the map immediately above our moving sprite. Again, if the character is not a slash, the first condition returns a 1. The place-keeping variable, A, must be less than or equal to 24 because we only want the sprite to actually move when the map can’t scroll any further. The third condition requires that the up arrow key was pressed.
Next, we will analyze the line of code that manipulates the horizontal coordinate of the moving sprite:

:Q+(sub(Str1,A+24P+Q-24,1)ø“/”)(0=fPart((A-9)/24))(Z=26)-(sub(Str1,A+24P+Q-26,1)ø“/”)(0=fPart((A-1)/24))(Z=24→Q

It is a bit more complex than the previous line, but will be easier to understand once we break it down further.

+(sub(Str1,A+24P+Q-24,1)ø“/”)(0=fPart((A-9)/24))(Z=26)
This part of the line determines if the moving sprite can move to the right. We again have three conditions to test: (sub(Str1,A+24P+Q-24,1)ø“/”), (0=fPart((A-9)/24)), and (Z=26). Again, sub(is used to test the character of the map that appears to the immediate right of the moving sprite on the screen. If the character is not a slash/wall, a 1 is returned. The next condition requires that (A-9) is cleanly divisible by 24, meaning that the map has scrolled all the way to its right side. The third condition requires that the right arrow key has been pressed.

-(sub(Str1,A+24P+Q-26,1)ø“/”)(0=fPart((A-1)/24))(Z=24
Here, the program determines if the sprite can move to the left. The three conditions to test are: (sub(Str1,A+24P+Q-26,1)ø“/”), (0=fPart((A-1)/24)), and (Z=24). In order to move left, the character of the map that appears to the left of our sprite must not be a slash. (A-1) must be cleanly divisible by 24, meaning that the map has already scrolled all the way to its left side, and the left arrow key must have been pressed.

Finally, we will analyze the line that manipulates the place-keeping variable, A, which controls the scrolling of the map. It isn’t any more complex than the two previous lines, just twice as long:

:A+(sub(Str1,A+24P+Q-24,1)ø“/”)(0øfPart((A-9)/24))(Z=26)-(sub(Str1,A+24P+Q-26,1)ø“/”)(0øfPart((A-1)/24))(Z=24)+24(sub(Str1,A+24P+Q-1,1)ø“/”)(A<169)(Z=34)-24(sub(Str1,A+24P+Q-49,1)ø“/”)(A>24)(Z=25→A

We will break this line into four sections.

+(sub(Str1,A+24P+Q-24,1)ø“/”)(0øfPart((A-9)/24))(Z=26)
This part is responsible for scrolling the map to the left when the right arrow key is pressed. Again, we have three conditions: (sub(Str1,A+24P+Q-24,1)ø“/”), (0øfPart((A-9)/24)), and (Z=26). Since the sprite isn’t supposed to move through walls, we still have to test for walls around the sprite when the map scrolls, which is what the first condition does: it tests to see if the character that appears to the right of the sprite on the screen is a wall. The next condition is the exact opposite of one of the conditions in the previous line that manipulates variable Q. The map may scroll if it hasn’t already scrolled all the way to its right side. By now, you should know that the third condition tests for the proper key to be pressed; in this case it is the right arrow key. Now on to the next section…

-(sub(Str1,A+24P+Q-26,1)ø“/”)(0øfPart((A-1)/24))(Z=24)

Here, the program tests to see if the map can scroll to the right when the left arrow key is pressed. Again, we can divide this into three separate conditions: the first making sure that the sprite won’t be passing through a wall, the second to make sure that the map hasn’t already scrolled all the way to its left side, and the third that requires the proper arrow key (left) to be pressed.
+24(sub(Str1,A+24P+Q-1,1)ø“/”)(A<169)(Z=34)

This part determines whether the map will be able to scroll up when the down key is pressed. By now you should get the drill: there are three conditions, the first tests for a wall immediately below the sprite, the second makes sure that the map hasn’t already scrolled to its bottom yet, and the third tests for the proper key to be pressed (down). But what is this 24, you ask, in front of our conditions? Well, remember that in this particular program, we are using a map with 24 columns. So when the map scrolls vertically, we want the shift the value of variable A by 24 so that we end up in the same column in an adjacent row. And finally for the last bit of code…
-24(sub(Str1,A+24P+Q-49,1)ø“/”)(A>24)(Z=25
Finally, the program tests to see if the map can be scrolled down when the up key is pressed. Again, we have three conditions: one that tests for a wall above the sprite, one that makes sure that the map hasn’t already scrolled all the way to its top, and one that makes sure the proper key (up) was pressed. Again, the 24 out front shifts variable A to an adjacent row without changing the column.

Well, that was a really long explanation, but I felt that it was necessary. I thought I explained the two codes before pretty well, but this last code should have cleared up any confusion. You may be wondering how I got some of the mathematical expressions in the sub(functions. Really, all I did was bust out a pencil and paper and asked myself, “When my sprite has these coordinates and A has this value, in what positions are the characters surrounding the sprite?” A little bit of logic, a little bit of math. It’s all good. It’s part of programming, so get used to it. ;)

You can (and probably should) use characters besides slashes for your walls. All you have to do is replaced the slash in each condition with the character you want to use for your walls and change the map. You can also use multiple characters for walls, but this is slightly more complicated and will make your program run slower. If you want to make your own maps, I would strongly advise you to download BASIC MapMaker from ticalc.org. Here’s a map I made using my BASIC MapMaker:
[image: image4.png]
Conclusion:

Scrolling maps can be a little complicated, but not too hard once you get the hang of it. The third code can be especially confusing if you don’t understand what’s going on, so you may have to read through the explanation several times and experiment on your own. It was also a bit confusing for me to write, so if you find anything that could be incorrect, please email me! (Don’t worry about this too much because I checked everything pretty thoroughly.) Notice that the first code scrolls a lot faster than the third, so use the first if you only need to do horizontal scrolling. I’ll have more on this topic soon!!! I am also fiddling around with stat plot sprites, so I may add another tutorial on those in the future.
If you haven’t already, go on to “An Introduction to z80 Assembly”. If I get any more ideas for tutorials, I would certainly be happy to write them. Or if you have any ideas, please email me at revolution2032@gmail.com.
©2006-2007 by MDR Falcon / www.geocities.com/revolution2032/games

