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The routines in this folder solve nonlinear regression problems using the Gauss_Newton Method with Step-Halving, logistic regression problems for binary dependent data using the probit, normit, or complementary log-log link functions, and two-stage least squares regression.

NOTE:  These programs are offered “as is.”  I make no claim that they are entirely bug free, although I believe they are.  If you encounter any problems with the programs, please send me an email so I can correct them.

NOTE:  These programs require the use of the Statistics with List Editor Flash application.
My aim is to teach you how to use these programs, not to teach statistics.  Thus, when I mention the ANOVA table or logit link function, I assume you already know what they are and/or when they are used, or are learning about them either in a class or on you own.

Fitting data to an arbitrary function is more of an art than a science.  Convergence to a solution can be very sensitive to the initial starting values, i.e., guesses.  And, there may be more than one solution or local minimum around the starting values.  If you get error messages such as singular matrix, this may mean that there is no solution or you need to choose a different set of starting values.

The routines are in a group file, AdvReg.89g.  Use TI-Connect to transfer them to your calculator.  There is a menu program; this needs to be run in order to use the regression routines.  The custom menu sets up four pull-down menus: Tools, Nonlinear, Logistic, and TSLS.

All regression routines use a data matrix created with the Data/Matrix Editor.  The data matrix consists of the variables in any order.  The first row of the matrix must be the variable names; I recommend one-letter names.  In any case, just make sure they do not conflict with any of the variable names in the AdvReg folder or TI reserved names.  (There are no variables with one-letter names in the folder.)  When performing regression there is no need to use all of the variables in a dataset; this means you can do many different regressions on a dataset without having to enter a new data matrix each time.  It also means you can do “model building” and test the significance of adding variables to a regression equation; this ability is one of the routines.

Give the data matrix a name and save it.  Open the Tools menu (F1) and select AddDS().  You will be prompted to enter the name of the data matrix.  When you run NonLin(), Logit(), or TSLS() you will be asked to select a dataset from the list of datasets created with AddDS().  AddDS() also archives the dataset.

Tools Menu
The options under the F1:Tools menu are straightforward.  Option 1 clears the home history screen.

Option 2, AddDS(), prompts you to add the name of a dataset to the list of datasets; this list is how you tell the programs what dataset to use.  It also archives the dataset.

Option 3, DelDS(), deletes a dataset from memory and the dataset list when you select its name from dataset list.

Option 4, GetVars(), displays the variables in a dataset, in case you forgot what they were, as well as the number of observations in the dataset.  Choose the dataset from the list presented.

Nonlinear Regression
The nonlinear regression routine can also handle weighted regressions as well as regressions with complex data.  However, I’m not sure one can do weighted regressions with complex data; at least I’ve never seen an example against which I can test the program.  The nonlinear regression program will, of course, do linear regressions.
Example 1

Most regressions are linear regressions or can be transformed into linear regressions.  Some, however, cannot be transformed.  For instance, an exponential equation of the form
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may model the growth of the U.S. population by decade from 1790, but it cannot be transformed into a linear regression problem.  (If the b2 variable was not there, it could be transformed into a linear regression problem.)  A nonlinear regression program is needed.  Press F2, Nonlinear, and select the first menu item, NonLin(), and then press enter, once or twice as needed.  This sets up a data input form.

The first item is “Select dataset.”  Press the right arrow key to see the list of datasets.  Scroll to “pop,” if needed, and press ENTER.  “pop” has the U.S. population figures, in millions, from 1790 to 1990, by decade.  Now, press the down arrow key to enter the regression equation.  The next line is used to enter the regression equation; the equation there is the one displayed above.  So enter p=b0*e^(b1*(y-1790))+b3.  Press the down arrow key to enter a list of the parameters and their initial guesses.  Enter {b0=20, b1=.03, b2=10}.  Finally, enter the weight variable; if none, enter the number 1.  The screen should look like this:
[image: image2.png]
After the data is input, press enter to begin computing the regression.  The program keeps you informed as to what is going on.  It first sets up the necessary matrices, etc., needed to compute the regression.  After that, each iteration is displayed along with the current sum-of-squared-errors.  At the end, a message will be displayed indicating whether or not the routine converged to an answer.  (As seen below, the convergence criteria can be changed.)

The other options under F2 (Nonlinear) display the output of the regression.  Option 2, FeqN, displays the fitted equation.  In this case it is 
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(It is unfortunate that the calculator simplifies the answer instead of leaving it in the form of an exponential equation.)
Option 3 under the F2 menu, OutN, displays a matrix of the parameters, their values, standard errors, t values and probability(t).  For this regression the output is
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(The 18 in “t(18)” is the degrees of freedom of the t statistics.)

Option 4 under the F2 menu, Iter, displays a matrix of the iterations the program went through to reach the estimated values of the parameters.  The iteration number, or sub iteration number, parameter values, and sum-of-square errors are displayed for each iteration.

[image: image7.png]
Option 5 under the F2 menu, ANOVA, displays the analysis of variance matrix.
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The “CTotal” in the ANOVA matrix stands for corrected total degrees of freedom and sum of squared errors.  The corrected totals are used when there is an intercept in the regression equation.  If there is no intercept, then the uncorrected totals are used.  However, R^2 and adjR^2 are always computed with the corrected totals.  (See a “Cautionary Note About R^2” by Tarald O. Kvalseth in The American Statistician, November 1985, pp. 279-85.)
Option 6 under the F2 menu displays the R square, adjusted R square, and standard error of the regression statistics.  For this problem they are: .99731, .99701, and 4.29323.

[image: image10.png]
Option 7 under F2, PrdNonl({ }, 1, .95), computes the predicted values for the mean and individual values of the dependent variable.  The default weight is 1 (indicating no weight) and the default confidence interval is .95 for a 95 percent confidence interval.  Enter a list of the independent variables and their values.  In this case find the estimated population for the year 2000.  Enter y=2000 in the list.
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The first line of the matrix gives the predicted value of the equation for the year 2000, 287.3 million people.  The second line gives the standard errors of the mean and individual values of the dependent variable, in this case p.  The third and fourth lines give the 95 percent confidence interval for the mean and individual values of p for the year 2000.
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Option 8 under the F2 menu, MB(), is for “model building.”  If you added one or more variables to the previous regression, MB() will compute the F statistic and probability associated with adding the variable(s).

Option 9 under the F2 menu allows you to change the convergence criteria by setting the maximum number of iterations and subiterations and the criteria for the percentage change in successive sum-of-squares values.  The values I have set are 30, 10, and 10-8.

[image: image45.png]

(NOTE: NonLin() may be used for linear regression also, that is, where the equation is linear in its parameters.  There are no restrictions on the independent variables.  They may be any differentiable function.  For instance, if x is an independent variable, it may occur in the equation as x2 or x5, etc., or SIN(x), LN(x), EXP(x), etc.  When using NonLin() for linear regression, you may set the initial guesses of the parameters equal to 1.)
Example 2: Weighted Regression
The weight variable may be specifically included in the dataset, or it may simply be one of the independent variables already in the dataset.  The weights are usually put in an n by n matrix along the diagonals.  However, for large datasets such a matrix can be too big to be handled by the TI-89’s limited memory.  So I developed a routine to that uses the weights in a vector (list) instead of a matrix.  For anyone interested the function is ‘dmmul’.
The dataset “dat” is used for the weighted regression.  You may use the GetVars() program under F1 to see the variable names and the number of observations in the dataset.
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'spc' is the sales of electricity per customer in a state; 'y' is the per capita income in that state; 'ep' is the price per kilowatt hour; and 'gp' is the price of an amount of natural gas that that the energy equivalent of a kilowatt hour of electricity.  The data is to be weighted by the inverse of the income per capita, 'y'.

The equation we estimate is spc = a + b1*ep + b2*y + b3*gp with a weight of 1/y.  Since this is a linear regression, enter the initial guesses as 1.
[image: image15.png]
The fitted equation is: spc = .45728*y – 7063.7816*ep + 1245.65916*gp + 40060.28733
[image: image16.png]
The parameters and their standard errors are:

 [image: image17.png]
The ANOVA table is:

[image: image18.png]
The predicted value for y = 7000, ep = 4, and gp = 1.5 is spc = 16874.6.  Notice that the weight is entered as a number, i.e. 1/7000 for 1/y.  The standard errors of the mean and predicted values are computed as well as the confidence interval for each.
[image: image19.png]
Example 3: Regression with Complex Data

The complex dataset is “dat1” with variables x1, x2, and y.  It has only 4 observations.
[image: image20.png]
The input for the regression is:  y = a + b1*x1 + b2*x2 with a weight of 1, meaning no weight.  The initial guesses are all 1.

[image: image21.png]
The fitted equation is: y = .98969*x1 + 4.00009*x2 - .83900 + (2.02107*x2 + 2.93831*x2 – .59506)*i where i is the square root of -1.
[image: image22.png]
Logistic Regression
This program computes the logistic regression for binary dependent data using the logit, probit (normit), or complementary log-log link functions.  Binary dependent data is in the form of 0s and 1s, where 1 signifies the occurrence of an event and 0 its nonoccurrence.   The output is a regression equation that can be used to predict the probability of an event happening given a set of values for the independent variable(s).

The dataset may have a frequency variable or two variables denoting the results of a binomial experiment.  The two variables are the number of successful events out of the total number of trials.  If the dataset is from a binomial experiment, there is no dependent variable to enter; the program will create it from the events and trials data.

The F3 menu is for computing the displaying the results of a logistic regression.  Option 1, Logit(), is for entering the information and computing the regression.  It sets up an input form.  The first item is to select a dataset.  Select “ingot” to be used in this example.  Next, enter a list of the independent variables.  The variables for this example are {h,s}.  Next, you are prompted to enter the link function; use the logit link function.  (The other link functions are the Probit and Complementary LogLog functions.)  Next, you will be prompted for a frequency variable.  The options are “No” for none, “Yes” for a frequency variable, and “Events/Trials” for a binomial experiment.  Select “Events/Trials.”  The last two options are to change the maximum number of iterations and convergence criteria.  Leave them at 30 and E-8 for now.  Press Enter to continue.

[image: image23.png]
Having selected “Events/Trials”, you are now prompted to enter the events and trials variables.  For this example they are e and t.  Press Enter.

The program will now run and take several minutes to complete.  A message will be displayed indicating whether the program was successful in estimating the regression.

(If you had selected “Yes” for a frequency variable, you would have been prompted to enter the name of the frequency variable.  Then you would be prompted to enter the name of the dependent binary variable.  If you had selected “No” for frequency or binomial experiment variables, you would have been prompted to enter the name of the dependent binary variable.)

Option 2 under the F3 menu, FeqL, displays the fitted equation.  For this example, it is:

.056771*s + .082031*h - 5.55917

[image: image24.png]
Option 3, OutL, displays a matrix of the parameters, their values, standard errors, and the Wald chi-square statistics and probabilities.
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Option 4, LLRatio, displays the –2 log likelihood ratio that tests the significance of the covariates, that is, of the independent variables taken together.  The output is:
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Chi2 is the chi-square statistic, DF the degrees of freedom, and Prob the probability of obtaining that value by chance.

Option 5, PrdLogt, computes the logit (or probit or complementary log-log) of “p,” where “p” is the probability of the event occurring given a set of values for the independent variables, the value of “p,” and the confidence interval of “p.”  If h=7 and s=1, entering PrdLogt({h=7,s=1}, .95) produces:
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Reading across, the value of logit(p) is –4.92818, the standard error is .74987, and the value of p is .007188.  The 95 percent confidence interval around p is .00166 to .03052.

Two-Stage Least Squares
Two-stage least squares is the most widely used single-equation method for estimating simultaneous system of equations.  Let Y be the endogenous or dependent variable in the system and X the exogenous or predetermined variables.  The equations to be estimated are of the form:
y = Y1*β + X1*ζ + u
y is an n by1 vector of observations on the “dependent” variable.
Y1 is an n by g matrix of observations on the other endogenous variables included in the equation.

β is the g by 1 vector of coefficients associated with Y1.

X1 is the n by k matrix of observations on the predetermined or instrumental variables appearing in the equation.
γ is the k by 1 vector of coefficients associated with X1.
u is the n by 1 disturbances in the equation.
The problem of applying OLS to the above equation is that the variables in Y1 are correlated with u.  The essence of two-stage least squares regression is the replacement of Y1 by a computed matrix Y_hat1, where hopefully the stochastic element is purged, and then performing an OLS regression of y on Y_hat1 and X1.
The matrix Y_hat1 is computed in the first stage by regressing each variable in Y1 on all the instrumental variables in the complete model and replacing the actual observations on the Y variables by the corresponding regression values.  Thus, 
Y_hat1 = X*(XT*X)-1*XT*Y1
where X = [X1  X2].  X is the n by k matrix of observations on all the instrumental variables in the complete model, X2 being the matrix of observations on those instrumental variables excluded from the equation under study.

In the second stage y is regressed on Y_hat1 and X1.  The equation for the 2SLS estimates can then be written as:
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where b is the vector of coefficients on the other endogenous variables and c is the vector of coefficients on the predetermined variables in the equation, including the intercept if any.

Example 1
The data used in this example are for a simplified model designed to explain variations in the consumption and price of food.  The data are from Kmenta, pp. 563-65.

The variables are:
q = food consumption per head

p = ratio of food prices to general consumer prices

d = disposable income in constant prices

f = ratio of preceding year’s prices received by farmers to general consumer prices

a = time in years

The endogenous (dependent) variables are q and p.  The exogenous (independent) variables are d, f, and a.

Estimate the following equations:

q = γ0 + β1*p + γ1*d               (the demand equation)
q = γ0 + β1*p + γ1*f + γ2*a     (the supply equation)

Press F4: 1 (TSLS) ENTER to begin the program.  Select the “kmenta” dataset from the pull down menu.   

In the equation box enter q = p + d.  (Note: you do not enter the coefficients for the equation.  That is done by the program.)
In the Endog. Vars. box enter in a list the dependent variables in the dataset: {q,p}.

In the Exog. Vars. box enter in a list the independent variables: {d,f,a}.

From the Intercept? pull down menu select Yes for an intercept.  (Note:  According to the SAS statistical software, if the intercept is set to No, the definition of the R^2 statistic for two-stage least squares is changed to 1 – (Residual Sum of Squares/Uncorrected Total Sum of Squares.)
From the VarDef pull down menu select Deg. Freedom with which to calculate the variances.  (The other option is to select # Obs. for number of observations.)  The input form looks like this:
[image: image33.png]
Press ENTER to begin the program.

Press F4: 2 (FeqTS) to display the fitted equation.  It is: q = .314382*d - .243708*p + 94.614861
[image: image34.png]
Press F4: 3 (OutTS) to display the parameters, their values, standard errors, t-values, and the t probabilities.

[image: image35.png]
Press F4: 4 (ANOVATS) to display the analysis of variance table.

[image: image36.png]
Press F4: 5 to display the R^2, adjR^2, and SE stats.

[image: image37.png]
To compute the other equation run the TSLS program again and just change the equation to q = p + f + a.  Everything else remains the same.
[image: image38.png]
The fitted equation is q = .252844*a + .256024*f + .240568*p + 49.448206.
[image: image39.png]
The other statistics can be displayed as shown above.

Example 2
This example is based on Klein’s model 1 (1950).  The endogenous variables are c, p, w, I, x, wsum, k, and y.  The exogenous variables are klag, plag, xlag, wp, g, t, and yr.

yr = year – 1931
c = consumption

p = profits

w = private wage bill

I = investment

x = private production

wp = government wage bill

g = government demand

t = taxes

k = capital stock

wsum = total wage bill

plag = profits lagged

xlag = private product lagged

klap = capitol stock lagged

y = c + i + g – t  (national income)

Estimate the following equations:

c = p + plag + wsum

i = p + plag + wsum

w = x + xlag + yr

Initiate the TSLS program and select the klein dataset.  Enter the first equation.  For the endogenous variables enter {c, p, w, i, x, wsum, k, y}.
For the exogenous variables enter {klag, plag, xlag, wp, g, t, yr}.

Select Yes for the intercept and Deg. Freedom for the variance definition.
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The fitted equation is: c = .017302*p + .216234*plag + .810183*wsum + 16.554756.
[image: image41.png]
To compute the other two equations just change the equation in the TSLS input form.

[image: image42.png]
The second fitted equation is:  I = .150222*p - .157788*klag + .615944*plag + 20.278209
[image: image43.png]
And the third fitted equation is:

[image: image44.png]
w = .438859*x + .146674*xlag + .130396*yr + 1.500297
(Note: Once the programs have been run at least once, all programs and functions in the AdvStat folder may be archived.  DO NOT archive anything else in the folder.  The datasets are archived by the AddDS() program.)
I hope you find the programs useful and enjoyable.  I had fun programming them.  I have also programmed these routines for DERIVE 6.1.  If you would like them, just drop me an email.

Any comments, suggestions, frustrations with the programs?  If so, just drop me an email.
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