Files: menus.h and menus.a

Size: menus.a: 5076, menus.h: 8026

Purpose: Additional custom menu functions for programmers

Author: Jude Nelson

Contact: judecn@aol.com

Table of Contents

I. About

II. Legal Stuff

III. The Menu Functions

IV. Credits

V. History

I. About

I made these functions for TIGCC programmers so that they would not have to deal

with the confusing built-in dialog box functions. The functions in this archive

are much simpler than the dialog box functions, so therefore they do not contain

some of the more advanced uses for them (like drop-down menus). However, the

finishing of the menu is easy to change (source is included) and the primary

menu function can easily support more menu instances.

II. Legal Stuff

There is no warranty to the functions in this file. As soon as they enter your

computer, they are your responsibility. I have done my best to prevent them from

doing damage to your computer or your calc, but damage to your calc is dependent

on whether or not you use the menu functions correctly. Also, because there

was no fine in the downloading or possession of this file, you are free to modify

the code as you wish.

III. The Menu Functions

In order to use the menu functions, you should add the files "menu.h" and "menu.a"

to your project. Make sure that you type in '#include "menus.h"' at the top of

your program, just underneath the line '#include <tigcclib.h>' or under the header

file that contains that line.

There are three functions in the menu archive file, as well as a few variables.

The functions you can use are menu(), drawbox(), and make_menu_box(). The variables

defined include two enumerations that define the menu instances and some pointers.

They are called m_instance and m_stat_ptr. Also, m_CHECK and m_EMPTY are defined as

global strings. Make sure that you have no variables with these names in your

project.

Menu Function

In order to use the menu functions, you should add the files "menu.h" and "menu.a"

to your project. Make sure that you type in '#include "menus.h"' at the top of

your program, just underneath the line '#include <tigcclib.h>' or under the header

file that contains that line.

There are three functions in the menu archive file, as well as a few variables.

The functions you can use are menu(), drawbox(), and make_menu_box(). The variables

defined include two enumerations that define the menu instances and some pointers.

They are called m_instance and m_stat_ptr. Also, m_CHECK and m_EMPTY are defined as

global strings. Make sure that you have no variables with these names in your

project.

Menu Function

int menu (short width, short height, short numterms, char *data[], short instance)

The first three variables describe the height and width in pixels of the menu,

as well as the number of terms (excluding the title) that will be in the menu.

The pointer to the data array will differ depending on the instance. The instance

describes what type of menu will be created.

Advantages

>> Easy to use and apply

>> Creates custom menus (avoids dialog box disadvantages)

>> Has additional uses than a dialog box

Disadvantages

>> Cannot work if AUTO_INT_1 is not activated or running (uses ngetchx())

>> Does not work with grayscale

Options

The options for the instance are as follows:

m_select: creates a menu where the user selects one of several terms using a small selector sprite.

m_check: creates a menu where each entry has a check box which can be checked or unchecked

m_message: creates a message box (title and text)

m_verify: creates a menu with a yes and no button

m_stat_change: creates a menu where each entry has a corresponding number that can be changed

m_prompt: creates a menu that prompts a string

The Syntax and Definition of *data[]

m_select

[image: image1.png]
If you choose to make a menu with the instance of m_select, data will need to contain

a title and all of the strings that will be the menu terms. Here is how *data[] will

be defined:

char *data[n+1] = {title, entry_1, entry_2..., entry_n};

where n+1 is the total number of strings in the data array, title is a pointer to a

string which contains the title of the menu (or it can just be quoted text), and the

entries are the pointers to the strings which are the menu items. For example, if I

defined data like this:

char *data[3] = {"foo title", "foo", "bar"};

(or instead of the quoted text, I used pointers to the text)

and created a menu with the instance m_select, I would get a menu with the title

"foo title", and with the options "foo" and "bar" which I could select. The

menu function returns the nth term selected.

m_check

[image: image2.png]
If you choose to make a menu using the instance m_check, the data array will need not

only the title and the menu items, but corresponding strings which dictate whether or not

the check box corresponding to the item is filled or not. What this means is after I

define all of the strings in the data array which will contain the entries, I will need to

type in m_CHECK or m_EMPTY afterwards within the string in a pattern that corresponds to

whether or not the menu item's box is checked. Confusing? This will clarify:

If I wanted to create a menu titled "foo menu", with the entries "foo" and "bar",

and I wanted "foo" to be checked, and "bar" not to be checked, I would declare

data like so:

char *data[5] = {"foo title", "foo", "bar", m_CHECK, m_EMPTY};

If you ignore the title, you will notice that m_CHECK corresponds to the check box

of "foo", and m_EMPTY corresponds to the check box of "bar". The way you would

declare data would follow this formula:'

char *data[2n+1] = {title, entry_1, entry_2,...entry_n, check_switch_1, check_switch_2, ... check_switch_n};

where n is the number of terms in the menu, and the check_switches are either set to

m_CHECK or m_EMPTY, depending on the state of the check box, and their number corresponds

to the number of the entry in the example. There is no valid return value, but

any changes made by the user in the menu will be reflected in the data array (i.e.

if the user changes a check box, it will be that way in the array after the menu function

terminates).

m_message

[image: image3.png]
This is the simplest instance for the menu function. Here, the data array

only needs to contain two strings: a title and a message. If I wanted to

create a menu entitled "foo", with the message "bar", I would declare data

like this:

char *data[2] = {"foo", "bar"};

Simple, yes?

m_verify

[image: image4.png]
This is a bit more complex than m_message. It has the same concept, but data

must include the text for Yes and the text for No. Data would be declared

like this:

char *data[4] = {title, message, yes_text, no_text};

These strings can be anything; you can choose to customize the "yes" and "no"

answers for the menu to make them more specific (i.e. "accept" and "decline").

When the user presses left or right, the text in the corner will appear if it is high-

lighted, and will be masked out if it is not.

m_stat_change

[image: image5.png]
This instance allows the user to change numeric values graphically. This is the

most complex menu system of all. Not only do you need to declare data, but you

need to declare char arrays that will store the data for the numbers that will

be changed. The way data should be declared as well as the numbers should

be like this:

//these need to be declared as char...

char num_1[3] = {start_num_1, num_1_min, num_1_max};

char num_2[3] = {start_num_2, num_2_min, num_2_max};

...

char num_n[3] = {start_num_n, num_n_min, num_n_max};

char *data[2n+1] = {title, message_1, message_2, ... message_n, num_1, num_2, ... num_n};

As you may have guessed, the three terms in the number arrays contain the actual

number, the minimum value for the number, and the maximum value for the number.

These, of course, can be negative. The n corresponds to the number of terms.

The title and the messages are text, and the number in the example of the message

corresponds to the number of the corresponding num array (i.e. message_1 will be

next to num_1[0] in the menu, message_2 will be next to num_2[0], etc).

For example, lets say I wanted to create a menu entitled "foo title", with the

two entries "stat one" and "stat two". The number corresponding to "stat one"

would be set to 7, where the greatest value of "stat one" would be 14, and the least

would be -23. The number corresponding to "stat two" would be 0, the minimum

value for this number would be -1, and the max would be 9. Here's how to make

the menu:

char stat_one_number[3] = {7, -23, 14};

char stat_two_number[3] = {0, -1, 9};

char *data[5] = {"foo title", "stat one", "stat two", stat_one_number, stat_two_number};

menu(LCD_WIDTH-4, LCD_HEIGHT-4, 2, data, m_stat_change);

After running the menu function, the values of stat_one_number[0] and stat_two_number[0]

will have been changed if the user changed them. Your other choice is to check for the

change in data, like this:

//if I wanted the value of the number corresponding to "stat one"...

char stat_value_1 = *(data)[3][0];

However, it is far easier to just get it from the num arrays instead.

m_prompt

[image: image6.png]
This is another simple usage of the menu function. By using the instance m_prompt,

you can get a string from a menu (only one string, however). The declaration of

data follows this format:

char *data[2] = {title, prompt_string, max_len};

For example, if I wanted to create a menu entitled "foo", which promted a string

8 characters in length, I'd do this:

char *return_str = 0, max_len = 8;

char *data[2] = {"foo", return_str, &max_len};

menu(LCD_WIDTH-4, LCD_HEIGHT-4, 0, data, m_prompt);

The value of return_str will change: it will point to the string that was inputted

by the user.

Note: Because ngetchx() is used to get the characters from the keyboard, it is

often best to make the height of the menu offsetted by at least 10 so that

the alpha shift in the status bar doesn't erase part of the bottom of the menu

box.

Special thanks to Zeljko Juric for the inputStr() function used to do this.

If you wanted to get a number from this type of menu, you can use atoi() to

convert the return_str pointer into the number entered in the string (for those

of you who didn't know)

IV. Keys

This section describes the keys used by each of the menu instances

m_select

UP:
move selector up

DOWN:
move selector down

ENTER:
select an item from the menu

m_check

UP:
move selector up

DOWN:
move selector down

ENTER:
change a check box

ESC:
exit the menu

m_message

(any key) close the menu

m_verify

LEFT:
select the text corresponding to yes

RIGHT:
select the text corresponding to no

ENTER:
select the highlighted text (it is highlighted only if it is visible)

m_stat_change

UP:
move selector up

DOWN:
move selector down

LEFT:
decrease number that is selected

RIGHT:
increase number that is selected

ESC:
exit the menu

m_prompt

(calc keyboard) enter in text

ENTER:
process text (closes menu, loads text into the return string)

V. Credits

Zeljko Juric--initial creation of the inputStr function in this archive file

myself--creating the archive file

VI. Other Functions

void drawbox(short x, short y, short width, short height, short fill, short mode);

This function creates a rectangle whose upper left vertex is at x and y, and the

width and height define the width and height of the box. Fill is a flag that

determines if the box is filled in or not (1 for filled, 0 for transparant).

Mode is a line mode that describes how the box will be sent to the video buffer.

NOTE: This function is used by make_menu_box(). This function uses DrawClipLine(),

where the clip is defined as the screen dimensions. This means that you can safely

draw a box partially outside of the video memory and no harm will come to the calc.

void make_menu_box(short height, short width, short x, short y);

This function draws the outline of a menu. Because it uses drawbox(), a menu box

can be safely drawn outside of video memory because the lines used in drawbox() are

clipped to the screen dimensions.

NOTE: This function will mask out any information behind it using A_REVERSE.

The lines drawn to form the box use A_OR. If you want to save the screen info,

make sure to create a temporary screen to save the current screen to so you can

restore it after the menu. For example, you could do this:

char temp_screen[3840];

memmove(temp_screen, LCD_MEM, 3840); //or whatever the pointer is to the graphic buffer that you are using

//menu stuff

...

//end of menu stuff

memmove(LCD_MEM, temp_screen, 3840); //or, again, whatever the pointer is to the graphic buffer that you are using

Enjoy these functions!
