Tutorial on 3D Programming
by David COZ

coz.hubert@infonie.fr

NOTE: This tutorial is based on the C language and assumes you are using TIGCC, making TI89 or TI92+ Programs. It assumes that you have a base in programming, especially in C. However, the concepts that are dealt here can be used for every development platform and every language. In fact, the ideas are the most important, not the coding.

PART I

In this part, we'll see:

* how to represent 3D points (Vertices) on the screen, whose points are 2D
* how to create an object (cube, pyramid)

**

STRUCTURES

First we have to define where we are going to work. In 3D space, a point is defined with 3 coordinates - X, Y and Z, or Length, Width and Depth. We'll keep to that order to make things easier. Such a point is called a 'Vertex'. We can use a structure for a vertex:

typedef struct {

 int x;

 int y;

 int z;

} Vertex;

We can now use syntax like this

Vertex vertex1 = {10, 15, -20};

In this example, we declare vertex1 as a Vertex, with:
vertex1.x=10 (x value),
vertex1.y=15 (y value), and
vertex1.z=-20 (z value)

But a screen only has two dimensions, so the point that represents the vertex is different from the vertex itself. We can declare another structure:
typedef struct {

 int x;

 int y;

} ScrPoint;

We can now use syntax like this:

ScrPoint point1 = {12, 8};

So in our example, vertex1 is represented on the Screen by point1.

**

LINKING BETWEEN A VERTEX AND A SCREEN POINT

That's good. But what is the link between the Vertex and the ScrPoint on the screen? This question is important and yet the answer is quite logical.
Just look around you. Notice that the further an object is (the bigger its

Z value), the smaller it seems. So, if vertex1.z increases, point1.x and point1.y will decrease.

So here is the formula:

ScrPoint.x = Screen_center.x + Constant * Vertex.x / Vertex.z;
ScrPoint.y = Screen_center.y + Constant * Vertex.y / Vertex.z;
where ‘Screen_center.x’ and ‘Screen_center.y’ are the coordinates of the middle of the screen. ‘Constant’ is a number that defines the perspective distortion. On a TI89, I find that 80 is a good value, but you can change it to see its effect on the display. However, we need to correct this formula a bit, because on TI calculators the Y origin is at the top of the screen:

ScrPoint.x = Screen_center.x + (Constant * Vertex.x) / Vertex.z;

ScrPoint.y = Screen_center.y - (Constant * Vertex.y) / Vertex.z;

 **

OBJECT DEFINITION:

We want to display objects (like a cube) and not a single vertex. Let's see how to 'construct' objects. You can guess we are going to change the vertices’ coordinates, but it is recommended to separate your initial vertices definition from the vertices you are going to transform, because after many rotations and rounding errors, the object can be misshapen. So that the initial vertex definition ALWAYS stays the same, you use a work vertex to store your vertices after transformations.
In a wire frame, defining an object is not very difficult. We first have to define all the vertices of the objects, then the lines that join the vertices.
With the formula above we can see that if a vertex is defined as {0, 0, 0}, it will be displayed in the middle of the screen. That means that if you want your object to be centered, your object center must be {0, 0, 0}.
**

CUBE EXAMPLE:

Let's see an example to make things clear.

We are going to define a cube. That means 8 vertices and 12 lines. First, the vertices definition:

Vertex CUBE [8] = {{-10, -10, -10}, {10, -10, -10}, {10, 10, -10}, {-10, 10, -10},
 {-10, -10, 10}, {10, -10, 10}, {10, 10, 10}, {-10, 10, 10}};

You can see that the center of CUBE is {0, 0, 0}.
We now declare the 'Work' vertex (to store vertices after transformations.)

Vertex Work;

Now we must define the 12 lines.

LINES [12] [2] = {{0, 1}, {1, 2}, {2, 3}, {3, 0}, {4, 5}, {5, 6}, {6, 7}, {7, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7}};
where {0, 1} means that we must draw a line between CUBE[0] (first vertex of the cube) and CUBE [1] (second vertex of the cube).
Then we declare the ScrPoints, which will represent the CUBE Vertices on the Screen, using the formula we saw above:
ScrPoint SP_CUBE [8];
Finally we have to declare where the camera (your eyes) is. This is done with another vertex:

Vertex Camera = {0, 0, 100};
That means you are looking the object with a depth of 100.

CODING THE CUBE DISPLAY

Now for the coding:

For (p=0; p<8; p++) { // For the 8 points...
 // Store the values in the Work cube
 Work.x = CUBE[p].x - Camera.x;

 Work.y = CUBE[p].y - Camera.y;

 Work.z = CUBE[p].z - Camera.z;

 // Calculate the ScrPoints
 SP_CUBE[p].x = Screen_center.x + (64 * Work.x) / Work.z;
 SP_CUBE[p].y = Screen_center.y - (64 * Work.y) / Work.z;
}

// Now that we have the ScrPoints, we must draw the lines on the screen...

int P1_x, P2_x, P1_y, P2_y;

For (l=0; l<12; l++) { // For the 12 lines...
 P1_x = SP_CUBE[LINES[l][0]].x; // First Point x value...
 P1_y = SP_CUBE[LINES[l][0]].y; // First Point y value...
 P2_x = SP_CUBE[LINES[l][1]].x; // Second Point x value...
 P2_y = SP_CUBE[LINES[l][1]].y; // Second Point y value...
 // Now draw the line between the 2 points.

 DrawLine(P1_x, P1_y, P2_x, P2_y, A_NORMAL);
}

The example given with the tutorial deals with what we saw above. You should 'play' a bit with it - change the distortion constant, change the camera position, change the Cube Coordinates, and so on.
You can also make the program interactive: when you push some button, it gets closer or further, or whatever.
PART II
In this part, we'll see:

* how to rotate an object around 3 axes
* how to optimize the display using lookup tables.
ROTATION

You can now create 3D objects and display them. But having a cube and being unable to turn it, move it, etc. is very frustrating! So how can we rotate our object?

As you may guess, we’re going to use cosine and sine functions.

NOTE:
*I don’t have the time to explain the formulas now. It is just a matter of basic trigonometry, and I need a graphic to explain. If you really want an explanation, let me know. I could implement it later.

What is rotation, in terms of a 3D object? We saw in Part I that we declare a special Vertex to define the camera position. Rotation is just turning the camera around the Object. You could also turn the object itself instead of turning

the camera; it's up to you. I will only explain the camera-turning technique, as it is what I use in SolidWorks.

The Rotation is defined by three angles: around the x axis, y axis and

z axis. We'll name them ang_x, ang_y and ang_z. The formulas to calculate the Camera Position depend on ang_x and ang_y (only two angles are necessary):

Camera.y = dist * sin(ang_x);

Camera.z = dist * cos(ang_x);

Camera.z = Camera.z * cos(ang_y);

Camera.x = dist * cos(ang_x);

Camera.x = Camera.x * sin(ang_y);

where Dist is the distance(norm) between the Object and the Camera.

However, if you just put that in your 3D engine, your object will quickly disappear from the Screen, because recalculating the camera position is not the only thing we have to do. For the moment we have only changed the camera position, but not its DIRECTION. As with a human eye, what you can see depends on your position and your direction.

Changing the camera position means transforming the Vertices. So we have to transform the Work Vertex, depending on ang_x, ang_y and ang_z:

// Rotation Around Y-Axis
intermediate = Work_CUBE.z; // intermediate value

Work_CUBE.z = - Work_CUBE.x * sin(ang_y) - Work_CUBE.z * cos(ang_y);
Work_CUBE.x = - Work_CUBE.x * cos(ang_y) + intermediate * sin(ang_y;
// Rotation Around X-Axis

intermediate = Work_CUBE.z; // intermediate value

Work_CUBE.z = - Work_CUBE.y * sin(ang_x) + Work_CUBE.z * cos(ang_x);
Work_CUBE.y = Work_CUBE.y * cos(ang_x) + intermediate * sin(ang_x);
// Rotation Around Z-Axis
intermediate = Work_CUBE.x; // intermediate value

Work_CUBE.x = Work_CUBE.x * cos(ang_z) - Work_CUBE.y * sin(ang_z);
Work_CUBE.y = Work_CUBE.y * cos(ang_z) + intermediate * sin(ang_z);

OPTIMIZATION

If you try to use such formulas, your cube will rotate like a snail, because:

* FIRST, the sine and cosine are very slow, and
* SECOND, the result will be a float, and floats are calculated very slowly on calc hardware.
So we must optimize those formulas a bit. The important trick is to use lookup tables for the sine and cosine. That means that you will store their value for 360 degrees in an array, like this:

Cos_table[360] = {1, 0.9999, …}

Sin_table[360] = {0, 0.01, …}

But the result is always FLOAT. So the second trick is to multiply these values by a quite big number, like 64 or 128, and only consider the integer part. So you will get:

Cos128_table[360] = {128, 128, 128, 128, 128, 128, 127, 127, …}
Sin128_table[360] = {0, 2, 4, 6, 8, 11, 13, 15, ...}
Then if you need 98 * cos(25), you just use:

(98 * Cos128_table[25])/128

 or even faster
(98 * Cos128_table[25]) >> 7

Because shifting 7 bits to the right is like dividing by 128 (2^7 = 128);

Even better, you should use lookup tables with 256 values.

That doesn't mean storing only 256 degrees, but changing your scale. So, cos(256) represents cos(360), cos(128) represents cos(180), etc.
So declare something like this (Not the same as above!):
Cos128_table[256] = {128, 128, 128, 128, 127, 127, …};
Sin128_table[256] = {0, 3, 6, 9, 13, 16, …};
Like this, you can declare an 'unsigned char' variable to store the angle you need, since 'unsigned char' goes from 0 to 255, and you can do what you want with your variable!

Ex:
unsigned char angle;

int Cos, Sin;

for (angle=0; angle < 1000; angle++) {

 Cos = Cos128_table[angle];

 Sin = Sin128_table[angle];

}

won't give any errors! If you put angle = 256, it will in fact store 0 (it is like angle=256%256). If we used arrays of 360 values instead of 256, we would have to test the angle variable so that it is between 0 and 360, using something like

Cos = Cos128_table[angle%360],
which is slower.

In 3D programming, speed is very crucial!

PART III

In this part, we'll see how to display objects in a 'Solid' way.

THE CONCEPT:

If you read the two other tutorials, you should be able to display objects and turn them, but ONLY in a wire frame mode. That means what is 'behind' the object isn’t hidden. Objects are solid in reality (imagine life in wire-frame), so we have to handle a 'hidden surfaces' technique to get a more realistic display.
But how will we do that? Well, many techniques can be used. In this tutorial, we will see the easiest-to-understand technique, which is also the fastest. You must know that this technique is not perfect, and you may use other techniques like Z_BUFFER to get a better display.
In the previous tutorials, we declared an object (like a cube) with its vertices (3D Points) and the Lines that join the Vertices. In a Solid display, you needn't the lines but you must declare the Faces (or Polygons) of your object. For a Cube, you have to declare which vertices compose the six faces. Then, for every frame, you must sort the faces by their average Z-Value. That means that the face with the greatest Z-Value (farthest from the camera) will be first, and the face with the smallest Z-Value (closest to the Camera) will be last. You can keep the order in an array, for example. Once you've sorted your faces, you display and fill them according to the rank you gave them. That means that the face with the greatest Z-Value (farthest from the camera) will be drawn and filled first, and the face with the smallest Z-Value (closest to the Camera) will drawn and filled last.

Thus, what is 'behind' (with great a Z-Value) will be covered by what is in the foreground (with a small Z-Value), because the faces are filled in order.

Before going to the code, you should have a good understanding of the concept (it's not very hard, though).

THE CODING:
First of all, we will use many things we have seen in the previous tutorials, so what you've learned isn't lost. We see that we have to declare the faces of our object, instead of the lines, so let's see how we do that.
Just to remind you, the vertices’ definition:

Vertex CUBE [8] = {{-10, -10, -10}, {10, -10, -10}, {10, 10, -10}, {-10, 10, -10},

 {-10, -10, 10}, {10, -10, 10}, {10, 10, 10}, {-10, 10, 10}};

Your Vertices must be stored in a 'logical' order! It will be useful later...

Then the faces definition: (6 faces of 4 Vertices each)

This is an array that contains the number of the vertices that are composing each face:

int FACE [6][4] = {{0, 1, 2, 3},

 {1, 5, 6, 2},

 {5, 4, 7, 6},

 {4, 0, 3, 7},

 {3, 2, 6, 7},

 {0, 1, 5, 4}};

So the first face contains the Vertices 0, 1, 2, and 3 (declared above).

The second face contains the Vertices 1, 5, 6, and 2, and so on.
The next step is to sort the faces by their average Z-Value. First, we must calculate the AVERAGE Z-Value of each face, in an array 'Z_Average_Value', for example. We do that by adding the Z-Value of the vertices contained in the face.

Imagine we have previously saved the Z_value of the Vertices in an array 'vertices_z_value'. This is simple:

int Z_Average_Value[6]; // Array to sort the AVERAGE Z-Value of the faces

int vrtx;

for (f=0; f<6; f++) { // For the 6 faces.

 Z_Average_Value[f]=0; // Init
 for (v=0; v<4; v++) { // For the 4 Vertices of each face
 vrtx = FACE [f][v]; // The number of the current Vertex is stored in face 'f',
 //Vertex number 'v'

 // add the Z-Value of the vertices contained in the face
 Z_Average_Value[f] += vertices_z_value[vrtx];
 }

// Then divide by the number of vertices per face, to get the 'Average'

Z_Average_Value[f] = Z_Average_Value[f]/4 ;

// That last line is not necessary, since all the faces have 4 vertices in a Cube.

}

Now we must sort them, with the face with the greatest average Z_Value ranked first. We will store the rank of our faces in another array, for example ’face_order':

int face_order[6] = {0, 1, 2, 3, 4, 5}; // initial ranking not important
Now the sorting routine. Again, there are many routines. As usual, we will see the easier-to-program-and-understand routine: the 'bubble sort', which you may have already used. As usual, this is not the most efficient, especially when you have lots of polygons. SolidWorks uses this technique when there are less than 60 polygons; otherwise it uses the 'Bit' sort, a technique I could write a tutorial about later.

The routine:

// flag is set to 1 if a swap occurs...

int flag = 1;

int intermediate;

int face, face_next;

// Until there is no swapping done in a full pass…
while (flag == 1) {

 flag = 0;
 for (f=0; f<5; f++) {
// read the face in 'face_order'

 face = face_order[f];

 face_next = face_order[f+1];

// if the z value of face_next is greater than the z value in face, swap them
 if (Z_Average_Value[face]<Z_Average_Value[face_next]) {

// We're doing a swap, so flag=1;
 flag = 1;

 intermediate = face_order[f];

 face_order[f] = face_order[f+1];

 face_order[f+1] = intermediate;

 }

 }

}

With the faces sorted by their average Z_Value, there is not much left to do. We now have to display the border and fill every face, according to their rank in 'face_order'. We must draw the lines (border) of the face. Look at the face below, containing the points 0, 1, 2, and 3. To draw the borders, we just have to draw the lines P0 to P1, then P1 to P2, then P2 to P3, then P0 to P1. So the 'draw_border' routine will look like this:
// draw the three 'consecutive' lines

for (i=0; i<3; i++)
DrawLine(ScrPoint[i].x, ScrPoint[i].y, ScrPoint[i+1].x, ScrPoint[i].y)
// Then the lines between the first and last points

DrawLine(ScrPoint[0].x, ScrPoint[0].y, ScrPoint[3].x, ScrPoint[3].y)

But be careful to remember that your Vertices must be stored in a 'logical' order!
 P0 -----

 | --------- P1

 | |

 | |

 | |

 | |

 | |

 P3----- |

 ------- P2

We also have to fill the face. I suggest you to always fill faces with triangles, because

* a triangle Filler is easy to program

* all shapes can be divided in triangles
* the 3 Points of a Triangle are always in the same 3D plane
* there is a triangle filler routine in the TIOS; slow but good for a starting point
If you want a better triangle filler routine, you can copy the one in SolidWorks (header 'functions'). I programmed it and it was greatly optimized, thanks to Thomas Nussbaumer. Also, I could write a small tutorial on triangle fillers later.

So in the case of our face above, we will fill the Triangle P0-P1-P2, then the Triangle P0-P2-P3. In all cases, we do something like this:

// in a cube, 'vertices_per_face' = 4

For (p=0; p<vertices_per_face-2; p++) {
DrawTriangle(ScrPoint[0].x, ScrPoint[0].y, // First Point Coordinates
 ScrPoint[p].x, ScrPoint[p].y, // Second Point Coordinates
 ScrPoint[p+1].x, ScrPoint[p+1].y);// Third Point Coordinates
}

So you know all the things to display objects in a 'Solid' way.

You may also notice that the display is quite slow, mainly because the TIOS triangle filling routine we use is very slow. Also, a simple technique could speed up the display: BackFace Culling.

