CAS86 v2.1 beta (2000 By Jason Shirey, The Johns Hopkins University

IMPORTANT: READ THIS FIRST!

This is a system designed for the sole purpose of symbolic and enhanced numeric calculation for the TI86 calculator. During development, priority was placed on maintaining the mathematical integrity of an expression, as opposed to timesaving approximations and limitations et cetera. This system is intended to be a full-calc system, or nearly so, commandeering some 40~50% or the 86’s resources in beta stage alone. Lastly, before proceeding to download this file, please understand that its design is nearly exclusively suited to an over-clocked machine or computer emulation; on an 86 running at normal speed, menus, keypresses, and especially calculations become very tedious very quickly. Also understand that while I am extremely confident the system is benign to all 86’s, the author takes no responsibility for any crashes or problems otherwise.

Contents:
1) Installation

2) Introduction

3) CAS

4) Front End

5) Kernel

6) Function Index

7) Miscellaneous Info

8) Limitations

9) Prospective Features

10) Trouble Shooting

Installation:
IT IS HIGHLY RECOMMENDED THAT YOU RESET YOUR MACHINE PRIOR TO INSTALLING; IF YOU HAVE ASAPXCMD [K BATTEN], THEN YOU WILL HAVE TO DELETE THAT FILE AT THE VERY LEAST.

1) Unload casx.86g onto your 86

2) Run “asm(asapXCmd)” and install it

3) Run “asm(CstmFont)” and choose item 1, choose “CASFont,” exit

4) Start up the system with “CAS86”

Introduction:

I am very pleased to be able to offer to you a computer algebra system for the TI86 calculator—the only that I am aware of for any Z80 calculator. Computer Algebra software, for those of you who are unaware, is capable of performing symbolic and numeric calculation. Such software is highly proprietary and, as a result, little public information exists pertaining to the construction and implementation of computer algebra algorithms. What information does exist demonstrates that computer algebra is best suited to languages like C++. I am very accustomed to many computer algebra systems, e.g. Mathematica, the TI92 & 89, Maple, MatLab, et cetera, and have tried to construct a similar system based off what I know of their designs and CAS86 is the result. Please read the information regarding the components of this file below before exploring the system.

Note: System files are prefixed with an “(”—leave these files alone

CAS: The Computer Algebra System

CAS86 is a shell specifically designed to enable and ease interaction between the Front End and the Kernel. It compiles the output from both and displays the data in a user-interface.

Special Keys:

F1: Tools

Open Front End/Kernel/Tasks; Exit; About

F2: Not yet operational

F3: Not yet operational

F4: Not yet operational

F5: System Data and Settings—Updated only upon initial activation of menu

Free Memory, System—Current, Capacity [given in # of nested functions], Argument Bound
, Cycle info
, and Task Handler

Alpha, A: About

Alpha, F: Open Front End

Alpha, K: Open Kernel

Mode: Opens System Status

Down Arrow: Open Tasks

Exit: Exit

Front End: The Expression Interface

The Front End is necessary to convert user-input into a format meaningful to the Kernel. The Front End operates at an idle between keypresses (“…” signifies idle) to conserve energy and functions in two modes: Active and Passive. Active mode [default setting] will probably be the mode of choice for users whose machines meet the recommended specifications, i.e. modified for speed or emulated. Active mode actively converts a keypress into internal format and displays the result as keys in real time. Passive mode, obtained by pressing <<INS>> [2nd, <>], very rapidly stores a keypress and returns for the next, evaluating the keys upon ascent into Active mode. Note: The Front End cannot be terminated in Passive mode; press <<EXIT>> to return to Active mode to escape.

The Front End will try to avoid any errors the user might make, however, when inputting numbers, care must be taken not to induce an 86 OS error, as this cannot be avoided. The Front End will close itself [for expressions involving a function] after the correct syntax has been given. Press <<ENTER>> when done otherwise.

Key Map

“_” signifies no use

(1st order, 2nd order, Alpha/alpha)

The most important information in this document follows this sentence: read carefully.

The notation for expressions within the CAS differs from standard notation of mathematical practice. A sort of prefix notation is used. The decision to do so was based on technical factors, like expression parsing and continuity of functional notation. Actually, the notation is highly logical. Mathematica users will find it similar to FullForm notation. All functions, ALL FUNCTIONS, use this notation:

3(4(*[3,4]—Refer to the Miscellaneous Info section for internal number operations

a+b(+[a,b]

a-i(^[a,*[-1,i]]

eSin(x/2)(^[e,Sin[/[x,2]]]

x/(2(()(/[x,([2,(]]

d/db(ln(ln(a)-b)/(a*b))(d[/[ln[([ln[a],b]],*[a,b]],b]

ArcSin(Cosh(((2)/(f(g(x))))-2(^[Sin-1[([cosh,/[(2, ([f, ([g,x]]]]],-2]

Or ^[Sin-1[([cosh,/[^[2,.5], ([f, ([g,x]]]]],-2]—See Miscellaneous Info for the difference

Every function has the same format: “([name,”<<arguments>>”]” If a symbol exists for a function, the format is the same: “symbol[“<<arguments>>”]” This is a highly logical arrangement of functions and arguments that is very visual and effectively demonstrates the internal complexity of all functions. Arguments are one of four object-types: global function, number, variable, local function. Full functional nesting is supported so functions can be used as input for other functions. In the end, this notation saves a lot of time and headache within the code and determining uncertainties introduced by parenthetical structure. Global function names are defined in the Function Index of this document. Variable names and local function names are not restricted in length. All numbers, except exact numbers, are floating point and are treated as they are by the 86’s native OS, i.e. approximated. Please refer to the Miscellaneous Info section of this document for more on exact numbers. Also, please refer to the Kernel section of this document for more information on the (-function and its uses.

Kernel: The Algebra Engine

The Kernel, as the word suggests, is the most important part of this system—assuming the functions are to be considered part of the Kernel as well. The Kernel applies the function definitions [“(function”], integrates the results into other definitions, and repeats until the calculation is complete.

Built in to the Kernel is a function-engine that identifies symbols and functional notation:

The “(” function is very useful. It serves as an internal marker of functions, as do a host of other symbols, e.g. “+,” “(,” et cetera. It operates both global and local functions, i.e. “Sin[x]” vs. “f(x).” Note that globally defined functions encapsulate arguments with brackets, “[]” while locally defined functions use parentheses, “().” In this version, locally defined functions are only separated from variables in name and class. Future versions will allow locally defined functions to operate as mini-Kernels and produce output.

For example: ([f,x,<<y,z,…>>](f(x,<<y,z,…>>) and ([sine,x](Sin[x], ([plus,a,b](+[a,b]

The Kernel shows the results of all sub-expressions as they are carried out in the bottom left-hand corner of the screen as well as percent-completion. This enables the user to view all the transformations of an expression as opposed to a single, final transformation.

Also built in to the Kernel is the previously mentioned cycle limitation. This value limits the number of attempts the Kernel will make to simplify a given sub-expression per argument. This concept is very crucial when considering the balance between technicality and practicality and is mandatory in getting the most out of this system for your personal needs at any given time. Obviously, a larger limit enables the Kernel to try to simplify an expression longer and hence increases the odds of producing a simpler output. However, even simple addition problems with 5 arguments that do not simplify could leave the Kernel cycling through 240+ definitions, and then backing out through each one again. I have found that the Kernel is usually pretty good at finding any transformations in relatively few cycles and that there is rarely—if ever—a need to let the Kernel cycle out. Personally, I try to keep the limit between 10 and 20 and would have a hard time upping it to 25. I would not suggest raising the limit above 50 unless in pursuit of curiosity and anything over 75 is likely to leave your calculator thinking for 10 minutes or more, which could kill your batteries in a few tasks.

If the Kernel meets the cycle limit, maxing out, it ceases to try and simplify an expression and begins backing out of the functions’ definitions, producing the identity form of whatever it may be trying to do; e.g. +[1,2](+[1,2] after maxing out. The user is made aware that the evaluation produced a max out and how many other max outs were also produced, if any. The Kernel does not cease to function after a max out. Rather, the next argument is loaded up and the maxed out expression reused again, with intent to be transformed from its max out state. In this way, an evaluation may max out, then be used in another expression that continues the evaluation of the maxed out function. However, a max out generally produces a large expression of complicated structure which, when re-evaluated, tend to produce larger expressions of more complicated structure ad infinitum. Typically, a max out incurred late in the evaluation process will not affect the overall output and could be ignored, whereas a max out early on will tend to snowball into an enormous expression with multiple max outs. When diagnosing the cycling needs of a given expression, consider the number of max outs and understand that the higher the number, the earlier it the initial max out was encountered. There is one warning pertaining to the cycle limit: the Kernel may at one stage produce a simplified sub-expression of an input and, if a max out is incurred, a non-simplified form of that sub-expression may appear in the output. This is unavoidable for technical reasons and is but one element of maxing an expression out. The golden rule of computer algebra is this: it is far easier to transform and simplify an expression than to deal with the tangle of its non-simplified functions.

Function Index: Definitions and Features

Symbol/Name[syntax]: Description

(/(n/a)[(-name, <<arguments>>]: Sets up global/local function and evaluates, if possible

+/plus[expr1, expr2]: Adds expr1 and expr2: Full associative and commutative support

*/mult[expr1, expr2]:Multiplies expr1 by expr2: Full associative and commutative support

^/powr[expr1, expr2]: Raises expr1 to the expr2-power

(/mnus[expr1, expr2]: Adds expr1 and -expr2
/ /dvid[expr1, expr2]: Multiplies expr1 by expr2-1
ln/loge[expr]: Takes natural log of expr: Uses exact values where possible

log/logb[base, expr]: Takes the logbase of expr: Uses exact values where possible

Sin/sine[expr]: Takes the sine of expr: <<Currently under development, i.e. incomplete>>

Miscellaneous Info: Important Information for all users

Exact Numbers:

While technically speaking, all rational numbers are [or can be made to be] exact. The Kernel treats all numbers, with a few exceptions, like approximate numbers, unless specified by a definition. Exact [or special] numbers, in the context of this computer algebra system are as follows:

i, e, (, (, (#, ln[#]

To demonstrate my point, (3 can be input two ways and is treated differently each way and each has its use: (3, as it is will be kept exact and observed as a variable, unless under certain circumstances, e.g. squaring it. ^[3,.5] produces a floating point-number object and is viewed no differently be the Kernel than 3 itself.

*There is one more way to input (3, which is in the next section.

Internal Number Operations:

The Front End will treat an incoming object according to the class of its 1st character. This means that if the first character of an object is a floating-point number, the entire object is considered a floating-point number, even if it contains variables or functions. The “ ” [space—key 2nd, F3] character is a benign FP-number marker that can be used as the first character of an object within the Front End. The Front End will read the object, “ <<>>”, as a FP-number, and hence, will import any data contained in the object directly from the 86’s OS; meaning, to use the variable ‘ymax’ as a number within CAS86 as opposed to a variable named ‘ymax’, input the object as “ ymax” and it will read in the FP-value of ymax. This is an important concept in minimizing trivial calculations imbedded in symbolic expressions and saves the Kernel a great deal of time.

Examples:

“1+XX” (1+XX’s defined value vs. “+[1,XX]”(+[1,XX]

“ (3”=”^[3,.5]”(1.732… vs. “(3”((3

“ (”(3.14159… vs. “(”((
“1/3”=”/[1,3]” [but much faster to calculate]

Use extreme caution in using this tool because the only objects the Front End can import without an error are real numbers.

This principal also extends to variables. As long as the first character represents a variable, the entire object is treated so; e.g. “x/4” is a variable while “/[x,4]”is a function.

Contribute to CAS86:

It is my estimate that more than 60% of the time CAS86 takes on a calculation is spent executing a certain BASIC module, RsrvSys0. This module is the heart of CAS86 and is integrated into the token, “part”—a token designed strictly for CAS86’s use. If this BASIC program and another, RsrvSys, could be completely contained in assembly, I would guess the system’s speed would be tripled—or even more, opening the system up for practical use to all 86 owners and multiplying the overall value of the system 10-fold.

Even the most modest of information would help greatly, especially if anyone reading this document is aware of the syntax and usage of the “stoOther” ROM-call. I would very much encourage anyone to try and turn both RsrvSys’s into assembly. RsrvSys0 is very complicated, however, and would require intimate knowledge of how to manipulate all of the types of the 86’s built-in variables in assembly language. Should anyone succeed, send me the code and I will immediately integrate it into “part” and re-release the system.

Limitations: Known Limitations of CAS86

Sometimes, an expression might become imbedded in a “higher level” function, such as the product of a sum <<*[2,[+[a,b]]>> When a “lower level” function gets this handed back, certain transformations may be overlooked <<+[*[2,+[a,b]],a]>> This occurs for unavoidable technical reasons, but could be fixed in an upcoming version with the release of an expand-function.

Powers and products of expressions are not always expanded out to check for potential transformations. Again, this could soon be fixed with an expand-function—perhaps to be built in to the Kernel.

In some cases, an infinite expression may detect its operation on a complex [imaginary] expression, at which point, it will stop behaving as an infinite expression and reduce to the “safer” variable-class, potentially leaving an expression in less-than-fully-simplified-form.

Don’t look for a symbolic Solver [includes limits] anytime soon. The mathematics behind such engines are a source of great fascination, and, while I will certainly devote some thought to the issue, no promises can be made at this point.

Prospective Features: Look for these features in future versions of CAS86

1) Full trigonometric and hyperbolic support

2) Expand function, maybe accompanied by factor function

3) Symbolic Calculus on the way!—Look for symbolic differentiation next few releases (
4) Ability to create and use locally-defined functions

5) Smarter cycle-control system: ability to set priority on inside/outside functions

6) Dynamic, expandable, object-class system—enable lists/matrices, etc.

7) FASTER modules (means faster system)

Trouble Shooting: Look here to solve your problem before writing me…
1) General Error—before taking an action, check several system variables: PROGNAME should be the string “temp”; shell should not be a program—delete it if it is. argmax should be counting number.

2) Number Base Error—an exact/special number must’ve been sent to the 86 OS. Not a big deal, but be careful using direct 86 OS access w/in the Front End

3) Data Type Error—Any number of problems: contact me w/ details

4) Syntax Error—An error has occurred when tokens, sent directly by the CAS to the 86 OS, caused a disruption. See General Error.

5) “What is ‘indet’?”—indeterminate quantity: not defined in mathematics (
6) “Some characters are screwed up on my program”—make sure CstmFont is running CASFont
*Due to frantic release, asapXCmd and CstmFont are used w/o their respective authors’ knowledge. asapXCmd exists here in different format from the author’s version. Their respective copyrights are respected completely.

===

CAS86 v2.1 beta by Jason Shirey, The Johns Hopkins University

shiwokarauotoko@juno.com
 (_, ()	 (_, EE) (_,) (_, -1) (_,))

 2nd <<EXIT>> <<MODE>>

<<Key Pad>>

 Alpha	 ((,() <>

(_,()	 (_,()	 (_,() (_,() <<CLEAR>>

(log,e,A/a) (sin,-1,B/b) (cos, -1,C/c) (tan, -1,D/d) (^,(,E/e)

 (ln,lim,F/f) (d,(,G/g) ([,(,H/h) (] ,i,I/i) (/ ,(,J/j)

(| ,(,K/k) (7,&,L,l) (8,(,M/m) (9,{,N/n) ((,(,O/o)

 (, ,(,P/p) (4,$,Q/q) (5,%,R/r)	 (6,”,S/s) ((,(,T/t)

(=,=,=)	 (1,!,U/u) (2,@,V/v)	(3,#,W/w) (+,(,X/x)

<<ON>> (0,},Y/y) (. , (, Z/z)	(- ,(,() <<ENTER>>

� This is a counting number that bounds the number arguments in any function-nest. This number can be any counting number, so long as it exists and does not force Free Memory into the 10% buffer, used by the Kernel. Ordinarily, numbers around 10 work well.

� Depending on the argument bound, a given expression that does not simplify might force the kernel to evaluate much longer than desired. Left unbounded, the Kernel will try to simplify every valid permutation of every form of every sub-expression…<<near infinite regress>>… of every expression. Cycle Maximum gives the maximum number of cycles the Kernel could execute. This number grows with respect to the factorial of the argument bound and can become absurdly enormous. While I have never seen the Kernel cycle out, I’m sure it’s possible, so Cycle Limit was added to the system to cap the maximum number of times the Kernel will try to evaluate an expression per argument of that expression. Please refer to the Kernel section of this document for more information.

� Determines the order and manner by which the Kernel evaluates tasks; “Last” executes the last task input, “Ask” allows the user to select a desired task to evaluate, and “All” executes all tasks not yet evaluated. “Ask” serves as the default setting.

� Pay very close attention to this expression. Note that -i is represented as *[-1,i]: the (-) is not considered a function by the Kernel and so cannot act on variables and functions directly. -a(*[-1,a] and -((*[-1,(] and -Sin(x)(*[-1,Sin[x]] and so forth. -2.5 is still -2.5, however.

