Digital Roots

For the purposes of this document, assume all numbers are in the set of natural numbers (positive integers, not including zero) unless specifically stated otherwise.

Digital Root:


Definition 1.1: a digital root of n 
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  is the digit sum carried out until the result is a single digit. We will use the notation:


For all n [image: image2.png]
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, dr(n) = the digital root of n.

Note that for the first 18 natural numbers, 1-18, dr(n) creates the sequence:
1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9, suggesting that digital roots follow the repeating sequence 1,2,3,4,5,6,7,8,9,…, which we will show to be true.

 First, we consider that adding one to the units digit will increase the digital root by one unless the units digit is nine, where this is still true unless the second condition, the digital root is nine, is true. This occurs because adding one will cause the sum of digits to increase by one, which will have a trickle-down effect to the digital root. (This is obvious for all stages of summing unless of one of the above is true, in which it is still true because we have already seen that it is true for those values earlier in the sequence.)
For examples like 19 and 29, it is clear that adding one subtracts eight from the digit sum, which just the sum of all the digits. This should move back by eight in the digital root sequence. 

However, to know what the sequence is up to then, we must consider that one always comes after nine in the sequence. This is clear, because if we were to add one to nine, the property described two paragraphs previously would cause 10 to be the next number. However, the digital root of ten is one, so one is the next number in the sequence. Using this and the property describe in the previous sequence, it is easy to see that the digital does follow the pattern of 1,2,3,4,5,6,7,8,9,…. 
Note: in the cases 99, 999, 9999, etc, this still works, except for you move back eight plus the appropriate number of nines. This still works, since they will still produce the next number. This will be one because they are all multiples of nine.

In the above paragraph we proved Theorem 1:

Theorem 1: the digital root follows the repeating pattern 1,2,3,4,5,6,7,8,9…

So it is clear that if n = a multiple of nine (every ninth number in the sequence is a multiple of nine and also is nine itself), dr(n) = 9. In every other case, dr(n) = n mod 9. (This is fairly obvious). If you think about it, this can be expressed as dr(n) = 1 + [(n-1) mod 9]

Theorem 2: for all n [image: image4.png]
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:

If n mod 9 = 0, dr(n) = 9

If n mod 9 ≠ 0, dr(n) = n mod 9
A little thought produces Theorem 3:

Theorem 3: for all n [image: image6.png]
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, dr(n) = 1 + [(n-1) mod 9]

Now we will set some properties of digital roots based on Theorem 2:
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 :



dr(x + y) = dr(dr(x)+dr(y))                                (A)
Proof: 
Note that every natural number can be written as (a + 9b), where a [image: image10.png]
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, b [image: image12.png]
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 0} (whole numbers), b is as large as possible and a is as small as possible. If x = a + 9b then, based on Theorem 3, dr(x) = a.

We will call the above paragraph Theorem 4. Proof: By Theorem 2, dr(a + 9b) = (a + 9b) mod 9 unless a = 9, in which case dr(x) = 9 = a by Theorem 2. Since n mod 9 is a sequence that repeats by nine, 9b mod 9 = 9 mod 9 = 0. In this case, dr(x) = a mod 9. As a is a number 1 through 9 (a cannot be ten or above because in the form above that would result in a subtraction of a multiple of nine from a and b being increased to satisfy the requirements of the form.), dr(x) = a.
Thus: Theorem 4:



In the form of (a + 9b), where a [image: image15.png]
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, b [image: image17.png]
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 0} (whole numbers), b is as large as possible and a is as small as possible, dr(a + 9b) = a.

 Note: this ‘a + 9b’ notation will mean the same thing throughout this proof. Thus, dr(x + y) = dr(ax + 9bx + ay + 9by​) where x = ax + 9bx and y = ay + 9by, which equals dr(ax + ay + 9(bx + by​)), which, by substitution into Theorem four equals dr( ax + ay ). As dr(x) = ax and dr(y) = ay, dr( ax + ay ) = dr(dr(x) + dr(y)). 
This brings the addition theorem, denoted by (A):


dr(x+y) = dr(dr(x)+dr(y))

We will prove a multiplication theorem in like manner:

Let x = (ax + 9bx) and y = (ay + 9by). If so, then dr(xy) = dr((ax + 9bx)(ay + 9by)). This also equals dr(axay + 9axby + 9aybx + 81bxby), which equals dr(axay + 9(axby + aybx + 9bxby)). We will substitute this into Theorem for like we did for (A), giving dr(axay). In the same manner as in (A), we note that this equals dr(dr(x)dr(y)).
This shows theorem (M), for multiplication:

dr(xy) = dr(dr(x)dr(y))
Section Two
In this section we will look at the digital roots of numbers in the form ne, or n to the eth power. Note: this e denotes exponent. I would use e for the logarithmic constant, although that will not appear in this document.

To begin with, we will look at dr(x2). This clearly equals dr(x•x). By (M) this equals dr(dr(x)(dr(x)). Since the sequence dr(x) repeats in groups of nine, it clearly follows that dr(x)dr(x) also repeats in groups of nine, as does dr(dr(x)dr(x)), which equals dr(x2) by (M). Thus, dr(x2) should equal the dr(x)th element of a list where the dr(x)th element of the list equals dr(x2). This list will repeat by nines, as we discussed above. Based on that, we can find each element of the list by squaring the numbers 1 through 9 and taking the digital root. Thus, the numbers will be in the sequence 1,4,9,7,7,9,4,1,9. This brings us to Theorem 5:

dr(x2) follows the repeating sequence S = {1,4,9,7,7,9,4,1,9} Also, Sdr(x) = dr(x2).
Next, to look at dr(ne), we will start by proving an extended version of the multiplication theorem.


First, we will prove that dr((a1+9b1)(a2+9b2)…(an+9bn)) = dr(a1a2…an). This is clear because all terms will be a multiple of nine except for a1a2…an, and substitution into theorem 4 eliminates all of the multiples of nine, as seen in earlier proofs. Because if xj = (aj​+9bj), then dr(xj​) = aj​, we can say

dr(x1x2…xn) = dr(dr(x1)(dr(x2)…dr(xn))             


X(M)


Using X(M), we can say that dr(xe) = dr(dr(x)(dr(x)…dr(x)), which follows a sequence repeating by nines as shown above. Thus,

Theorem 6:

dr(xe) follows a sequence E which repeats in groups of nines and Edr(x) = dr(xe). Not all powers necessarily follow the same sequence.

It is clear that the sequence for e=1 is {1,2,3,4,5,6,7,8,9}, and if we were to make a sequence for e=0 it would be {1,1,1,1,1,1,1,1,1}. At this point it is relatively easy to predict what dr(ne) is, but we will make it easier still.

Lets say we wanted to find the sequence for three, but we are to lazy to actually cube a number beyond 53 = 125. Instead, we could examine what dr(xe1+e2) equals. From our rules of exponents we know that this equals dr(xe1 • xe2), which equals dr(dr(xe1)dr(xe2)). Thus, for a sequence of three, which must repeat by nines, we could find each element by the following formula:

Cdr(x) = dr(Sdr(x) • Fdr(x)) where F is sequence E for e=1 and C is sequence E for e=3. Using this, we find C = {1,8,9,1,8,9,1,8,9}.
Thus, Theorem 7:

For e = ex + ey, Edr(n) = dr(Exdr(n) • Eydr(n))
So, now it is much easier to find E4 ( En will mean E for e=n from here on out), E5, etc. However, there is an even easier way to find E4.

What do you think dr(xe1e2) equals? From rules of exponents we know this equals dr((xe1)e2). Let w = xe1. Now, we can see an expression dr(we2). Fdr(w) , where F is the E sequence for e = e2, then equals its E sequence, which also equals Fdr(x^e1), which equals FG<sub>dr(x)</sub> where G is the E sequence for e = e1. Essentially, you can find the E4 sequence as follows:
	Number = n
	E1n = m
	E2m​ 

	1
	1
	1

	2
	4
	7

	3
	9
	9

	4
	7
	4

	5
	7
	4

	6
	9
	9

	7
	4
	7

	8
	1
	1

	9
	9
	9



We will call the formula described above theorem 8.

Thus, E4 = {1,7,9,4,4,9,7,1,9}. We find E5 to be {1,5,9,7,2,9,4,8,9} by theorem 7 using 3 and 2, and E6 by theorem 8 using 3 and 2. We find E6 to be {1,1,9,1,1,9,1,1,9}.
The wrap up: it is your task to prove, using theorem 7 and the logic used to produce theorem 3, the following statements (These have been proved!):

For all n in natural numbers, the En sequence is:


If n =1 : {1,2,3,4,5,6,7,8,9}


If 1 + (n – 1) mod 6 =1 and n≠1 : {1,2,9,4,5,9,7,8,9}


If 1 + (n – 1) mod 6 =2 : {1,4,9,7,7,9,4,1,9}


If 1 + (n – 1) mod 6 =3 : {1,8,9,1,8,9,1,8,9}


If 1 + (n – 1) mod 6 =4 : {1,7,9,4,4,9,7,1,9}


If 1 + (n – 1) mod 6 =5 : {1,5,9,7,2,9,4,8,9}


If 1 + (n – 1) mod 6 =6 : {1,1,9,1,1,9,1,1,9}
Using these , you can easily find that 12345678948googul = 7

dr(12345678947) = dr(1+2+3+4+5+6+7+8+9+4+7) = dr(56) = dr(5+6) = dr(11) = dr(1+1) = 2

googol -1 (mod 6) = 3, +1 = 4

E42 = 7
