
Project.........Grammer Documentation
Program.........GRAMMER
Author..........Zeda Elnara (ThunderBolt)
E-mail..........xedaelnara@gmail.com
Size............6207 bytes
Language........English
Programming.....Assembly
Version.........1.20.10.11
Last Update.....20 October 2011

Grammer Tutorial
Introduction

Grammer is a programming language designed to be powerful, fast,
efficient, and safe. However, with all of that said, though it isn't as tough to
learn as Assembly, it will probably be a little more difficult than BASIC. One
similarity to BASIC is that Grammer is interpreted. This makes it slower than
assembly, but it is smaller and more safe.

This tutorial will be designed to show Grammer users all the cool
features and hacks that Grammer provides, so have fun!

Terminology
There are ideas and terms in Grammer that would almost never appear in

BASIC. So the first thing that neads to be covered is terminology:
Pointer

Pointers are used often in Grammer as a means of accessing data. This
has a few positive side effects as well as a few negative ones. In easy(ish)
terms, all data is located in memory. The "location" is given as a number and on
the calulator, this number is from 0 to 65535. A pointer, then, points to the
data location.

So where are pointers used in Grammer? Say, for example, you want to
reference a string. In Grammer, you would do "HELLO→A. The location of the
string "HELLO" is stored to A.
Sprites

A sprite is just an image. In Grammer, sprites are a multiple of 8
pixels wide up to 96 and up to 64 pixels tall.
Strings

Strings can be any form of data. They can be text, sprite data, label
names, even code.
Pointer Vars

Pointer Vars are the letters A through Z and Ɵ as well as their
primes. For example, S and S' are two different pointer vars. These are used to
store pointers or values. Pointer vars are 16 bits, so only integers from 0 to
65535 are stored to them.

Subject 1-Numbers
In Grammer, values are integers from 0 to 65535. This is one of the

key differences between Grammer and TI-BASIC. While this may make some things
difficult, this has a few uses and effects not found in BASIC.

So first thing up, what happens when you go beyond 65535? The numbers
simply loop back to 0! So what happens when you go below 0? You loop back
starting at 65535! This is called modular math, so if you understand this
section, you will actually be understanding an important concept in number
theory. The uses of this will come later...

Subject 2-Math
In Grammer, math does not follow Order Of Operations and has some

limiting factors (like only working with 16-bit integers). However, there are
exploits that can be useful for this. Anyway, math is done from right to left,
so as an example, we will look at 3*4+6/4-2:
3*4+6/4-2
3*4+6/ 2
3*4+ 3
3* 7
21

There are a bunch of math commands at your disposal, too, not just basic math.
The tricks, however, come from Ɵ'. There are several operations that modify Ɵ'
as a way to return additional information. For example, when adding, if the
result exceeds 65535, 1 is stored to Ɵ', otherwise it becomes 0:
 +: If the result is greater than 65535, Ɵ' is 1, otherwise it is 0.
 -: If the result is less than 0, Ɵ' is 65535, otherwise it is 0.
 *: Ɵ' is the upper 16 bits allowing for a 32-bit result.
 /: Ɵ' is the remainder
 2: Same as multiplication
See the Math Functions section for more info on other operations.

If you wanted to do If 24=((A*8)+(B*12)), you would do this:
 :A*8
 :+B*12
 :If =24
However, if you want to keep it all on one line (because anything in an If or
While statement does not modify Ans), you can use a space instead of a newline:
 :If A*8 +B*12 =24

Subject 3-Logic
Logical operators are used to compare values. If the logic is true,

the result is 1 and if it is false, the result is 0. As an example, 3>4 is false
because 3 is not greater than 4, so this returns a 0. These are useful for
conditional statements used in If , While , and Repeat .

Subject 4-If blocks
If blocks are often used because they are fairly useful. For example,

if you want to do something if a condition is true, you will usually want to use
an If statement. For example, if you want to increment A if getKey is 9 (if
[ENTER] is pressed):
 :If getKey=9
 :A+1→A
As in TI-BASIC, you can also use an If...Then...End statement to handle multiple

lines of code. For example:
 :If A=1
 :Then
 :-C→C
 :-D→D
 :End
Although usually you can get away with putting it all on one line like this to
save a few bytes:
 :If A=1
 :-C→C -D→D ;note that there is a space instead of a newline

Subject 5-Loops
Most games or math algorithms will use loops and Grammer offers three

loops that act the same way as in BASIC:
Repeat
 This will repeat the code between Repeat...End until the statement is true.
For example, to increment A until A=999:
 :Repeat A=999
 :A+1→A
 :End
Note that this will execute the code first and then check the conditional.
While
 This is a little different from Repeat in that it executes the code in the
loop while the condition is true. If the condition is false before it enters the
loop, the code inside never gets executed. So for example, to loop so long as
A<999:
 :While A<999
 :A+1→A
 :End
For(
This will increment a variable from a starting point to an ending point. For
example, this will cycle starting with A=3, incrementing A by 1 every cycle
until it reaches 9:
 :For(A,3,9
 :B-1→B
 :End

Subject 6-Labels
Labels are a neat feature in Grammer that are very much unlike BASIC.

In BASIC, you start a label name with Lbl and it can be up to 2 chars long and
must be numbers or letters (or a combination).

In Grammer, labels start with a "." and can contain any character
except a newline. There is also no size limit, but remember that a label of
fifty chars will take longer to locate than one of 5 characters. Here is a label
example:
 :.HeLLO
We use Lbl to get the location of the label which is used by Goto. This also
lets you store data to a label and get a pointer to it. So as an example:
 :Lbl "HeLLO→Z

 :<<Code>>
 :.HeLLO

Subject 7-Code Flow
Oftentimes, linear code flow just won't work. Sometimes you need to

jump around a bit and there are a few commands for this:
Goto
 This is used to jump to wherever a pointer is pointing and execute code from
there. Here are two ways to jump to a label:
 :Lbl "HeLLO→A
 :Goto A
Or:
 :Goto Lbl "HeLLO
Return
 This returns a pointer to the line following it. I should note that this was
created before Repeat and While. So an example of a loop until [CLEAR] is
pressed:
 :Return→Z
 :If 15=getKey
 :Goto Z
prgm
 This will execute a subroutine and then come back. See Subject 10 for info on
subroutines. If the subroutine is located at eh label named HeLLO:
 :Lbl "HeLLO→A
 :prgmA

Subject 8-Strings
Strings are accessed through pointers. The quote token returns the

pointer to the string. So for example, here are two ways to display text:
 :"HELLO WORLD→A
 :Text(0,0,A
Or:
 :Text(0,0,"HELLO WORLD

Subject 9-Sprites
Using sprites is a pretty advanced technique, so don't expect to

understand everything here.
Sprites are pretty much mini pictures. They are a quick way to get

detailed objects that move around making them a powerful tool for graphics. In
Grammer, the main sprite commands are Pt-On(and Pt-Off(and both have
differences and advantages over the other.
Sprite Data
Sprite data is in the form of bytes or hexadecimal and you will want to
understand binary to hex conversions for this. For example, to draw an 8x8
circle, all the pixels on should be a 1 in binary and each row needs to be
converted to hex:
0 0 1 1 1 1 0 0 =3C
0 1 0 0 0 0 1 0 =42
1 0 0 0 0 0 0 1 =81

1 0 0 0 0 0 0 1 =81
1 0 0 0 0 0 0 1 =81
1 0 0 0 0 0 0 1 =81
0 1 0 0 0 0 1 0 =42
0 0 1 1 1 1 0 0 =3C
 So the data would be 3C4281818181423C in hexadecimal.
Sprite Logic
 There are 5 forms of sprite logic offered by Grammer, currrently. These tell
how the sprite should be drawn and can all be useful in different situations.
Overwrite:
 For an 8x8 sprite, this will erase the 8x8 area on the screen and draw the
sprite.
AND:
 This leaves the pixel on the screen on if and only if the sprites pixel is on
and the pixel on the screen is on.
OR:
 This will turn a pixel on on the screen if it is already on or the sprite has
the pixel on. This never erases pixels.
XOR:
 If the sprites pixel is the ame state as the one on the screen, the pixel is
turned off, otherwise, it is turned on. For example, if both pixels are on, the
result is off.
Erase:
 Any pixels that are on in the sprite are erased on screen. The pixels that
are off in the sprite do not affect the pixels on the graph buffer.
Pt-On(
 This is used to display sprites as tiles. This means it displays the sprite
very quickly, but you can only draw to every 8 pixels.
Pt-Off(
 This is a slightly slower sprite routine, but it allows you to draw the
sprite to pixel coordinates.

Subject 10-Sub Routines
Subroutines are very usefl for code organisation and saving memory. If

you have a piece of code used multiple times throughout the program, you will
probably benefit from this. A subroutine must end with an End token and is
called with prgm instead of Goto. So for example, this is a way to call a
subroutine:
 :Lbl "SUB1→A
 :prgmA
 :prgmA
 :Goto Lbl "Stop
 :.SUB1
 :Circle(rand/1024,rand/1024,rand/1024,3
 :DispGraph
 :End
 :.Stop
 :Stop

Subject 11-Text(
Text(has a lot of neat features in Grammer. First, Grammer uses its

own font and it works like the homescreen in that it draws in 24 columns (the
homescreen draws in 16 columns). The font is 4x6 and is fixed width. However,
here are the neat aspects and how to use the command.
-To draw text, simply do this:
 :Text(Y,X,"Text ;"Text" can be a pointer to a string
-To draw a number, use the ' symbol:
 :Text('Y,X,99
-To draw a number in a specific base (use 2 to 32), add another argument:
 :Text('Y,X,99,16 ;drawn in hexadecimal (so it shows 63)
-To draw at the end of the last text drawn, use a degree symbol to replace
coordinates:
 :Text(°"Text
-Likewise, you can do this with numbers:
 :Text('°99,2 ;draws 99 in binary
-But there are more effects, too, like typewriter mode! There are two ways to do
that, so here is one:
 :/Text(Y,X,"HELLO
-And you can use numbers and other operators, too!
-Another thing that is nice is that text wraps to the next line and if it goes
off the bottom, it wraps to the top.

Subject 12-Interrupts
An interrupt is similar to a subroutine, but there are a few things to

keep in mind. You might want to back up your program before experimenting:
-The code cannot take too long to execute (not sure how long too long is)
-The code gets automatically executed over 100 times per second
-To set an interrupt, use Func
-To stop the interrupt, use Func0
So here is an example of an interrupt that updates the LCD automatically:
 :FuncLbl "INTERRUPT
 :<<Code>>
 :.INTERRUPT
 :DispGraph
 :End

Subject 13-Data
The ability to access data is a powerful tool and if used improperly

can cause a crash. So the key here is to use commands as they are intended!
Anyway, there are several ways to create and access data. The functions you will
want to look at are:
int(
iPart(
(
{
Send(
Get(

Subject 14-Particles
Grammer has its own particle engine built in and this provides for

some neat graphics. To use particles, first you need to add them and then you
need to recalculate positions and whatnot. So for example:
 :R▶Pr(;This clears the particle buffer
 :P▶Rx(2,2 ;This adds a particle at pixel coordinate (2,2)
 :Repeat getKey=15
 :R▶Pθ(;Updates particle data
 :DispGraph ;Displays tthe graph
 :End

Commands
*Not like BASIC, "Ans" is always the last computed value, not the value from the
previous line.
→
This stores Ans to a variable. For example:
 :Return→A'
That will store the value output from Return to A'
//
This is used to start a comment. The comment goes to the end of the line. A
commented line is skipped. As a note, the user can include a comment after code
so long as there is a space or colon before the //. Examples of valid comments
are:
 ://This is a comment, so 3→A does noting to A.
 :1→A
or:
 :1→A //Hi!
or:
 :6→A://Rawr.
.
This is used to start a label name. Anything in the label is ignored, so
commands can be used in labels. For example:
 :.Circle(
Or:
 :.Circle(0
"
This starts a string. The output is a pointer to the string that can be used
later to reference it.
Ä
If you put a pi symbol before a number, the number is read as hexadecimal. For
example, Ä3F would be read as 63.
!
This has several uses. The first is to work like the not() token in TI-BASIC. So
for example, 3=4 would return 0 because it is not true. However, !3=4 would
return 1. Likewise, !3=3 would return 0. The other use is with loops. For
example, If A=3 will test if A is 3 and if it is, it executes the code. However,
!If A=3 will execute the code if A is not 3. See If, If...Then...End, While,
Repeat, and Pause If.

If x
If "x" is not 0, the line following it will be executed. The line is skipped if
"x" is 0. "x" can be any operation resulting in a number. For example:
 :3→A
 :4→B
 :If A=B ;Since A=B is false, the following line is skipped
 :9→A
!If will execute the code if the statement is false
If... Then... End
This is similar to If except if the statement results in 0, any code between amd
including Then and End will be skipped. This works like the TI-BASIC command.
For example:
 :If 3=4 ;3=4 returns 0
 :Then
 :3→A
 :9→B
 :16→C
 :End
!If...Then...End works if the condition is false.
Return
This returns a pointer to the next line of code in Ans
Goto
This is unlike the BASIC Goto command. This jumps to a pointer as opposed to a
label. For example:
 :Return→L
 :<<Code>>
 :Goto L ;This jumps to the line after "Return→L"
Lbl x
This returns the pointer of a label. x is a pointer to the label name. See the
examples at the beginning to see how Lbl can be used.
For(
The arguments for this are:
 For(Var,Start,End
Var is the name of a var
Start is the starting value to load to the var
End is the max value to load to the var
What this does is it loads the initial Start value into Var. It executes code
until it reaches an End statement, then it incrememnts the var. If incrementing
goes higher than End, the loop finishes and code continues, otherwise it
executes the loop again. So for an example:
 :For(R,0,48
 :Circle(32,48,R,1
 :DispGraph
 :End
 :Stop
Pause
This will pause for approximately x/100 seconds. So Pause 66 will pause for
about .66 seconds.

Pause If
This will pause so long as the condition is true for example, to pause until a
key is pressed, Pause If !getKey
Alternatively, using !Pause If will pause while the condition is false. So to
pause until enter is pressed, do !Pause If 9=getKey
While
While loops are like If statements addicted to crack-- they just keep coming
back. An If statement is content with just checking if the result is true
(true=1), but a while loop will not only execute the code up to End if it is
true, but it will loop back to try it again! To give you an idea, this will keep
looping until Clear is pressed, and while it is at it, it will increment A and
decrement B:
 :0→A →B
 :While getKey≠15
 :A+1→A
 :B-1→B
 :End ;This tells the While loop to End and restart!
Alternatively, !While will only execute the code if the statement is not true.
Repeat
This is a loop that is kind of the opposite of a While loop. This will repeat
the code up to an End until the statement is true. So for example, to wait until
clear is presed:
 :Repeat getKey=15
 :End
!Repeat checks if the statement is false in order to end. For example, to remain
in the loop while Enter is being pressed:
 :!Repeat getkey=15
 :End
DispGraph
Displays the graph screen. You can display another buffer by using a pointer.
getKey
This returns a value from 0 to 56 that is the current key press. You can use
this chart for values.
Also, getKey(will allow you to see if a key is being pressed. For example,
getKey(9 will return 1 if enter is pressed
Get(
This uses a string for the name of an OS var and returns a pointer to its data.
-If the variable does not exist, this returns 0
-If it is archived, the value returned will be less than 32768
-Ɵ' contains the flash page the variable is on, if it is archived, otherwise Ɵ'
is 0
As an example, Get("ESPRITES→A' would return a pointer to the data of
prgmSPRITES in A'.
prgm
This is used to execute a sub routine.
Circle(Y,X,R,Method
This draws a circle using Y and X as pixel coordinates and R as the radius of
the circle in pixels. Method is how to draw the circle:
 1-Black border

 2-White border
 3-Inverted border
*Method has changed and will likely change again
Pt-Off(
This is used to draw sprites to pixel coordinates. It is limited in some ways,
compared to the Pt-On(command, but more flexible in others. The syntax is:
 Pt-Off(Method,DataPointer,Y,X,Width,Height
Method is how the sprite is drawn:
 0-Overwrite
 This overwrites the graph screen data this is drawn to.
 1-AND
 This draws the sprite with AND logic
 2-XOR
 This draws the sprite with XOR logic
 3-OR
 This draws the sprite with OR logic
 5-Erase
 Where there are normally pixels on for the sprite, this draws them as
 pixels off.
DataPointer is a pointer to the sprite data
Y is the pixel Y-coordinate
X is the pixel X-coordinate
Width is 1. More options may be due in the future, but for now, just put 1 :)
Height is the number of pixels tall the sprite is
*By adding 8 to the Method, the data will be read as hexadecimal
Pt-On(
This also draws sprites, but only to 12 columns (every 8 pixels). This is
slightly faster than Pt-Off(and has the advantage of variable width. It also
has the DataSwap option that isn't present with the Pt-Off(command. Here is the
syntax of the command:
 Pt-On(Method,DataPointer,Y,X,Width,Height
Method-This is how the sprite is drawn:
 0-Overwrite
 1-AND
 2-XOR
 3-OR
 4-DataSwap
 This swaps the data on the graph screen with the sprite data. Doing this
 twice results in no change
 5-Erase
DataPointer is a pointer to the sprite data
Y is the pixel Y-coordinate
X is a value from 0 to 11. Multiply this by 8 to get the pixel coordinate it
 will draw to.
Width is how wide the sprite is. 1=8 pixels, 2=16 pixels, et cetera
Height is the number of pixels tall the sprite is
*By adding 8 to the Method, the data will be read as hexadecimal
Line('
This is used to draw lines. The syntax for this command is:

 Line('x1,y1,x2,y2[,Method
So it is two sets of pixel coordinates and then the Method:
 0=White
 1=Black
 2=Invert
If Method is ommitted, it uses 1 as the default.
Line(
This is used to draw rectangles. The syntax for this command is:
 Line(x,y,Height,Width,Method
x is a value from 0 to 95 and is the x pixel coordinate to begin drawing at
y is a value from 0 to 63 and is the y pixel coordinate to begin drawing at
Height is a value from 1 to 64 is the number of pixels tall the box will be
Width is a value from 1 to 96 is the number of pixels tall the box will be
Method is what kind of fill you want:
 0-White. This turns off all of the pixels of the rectangle
 1-Black. This turns on all of the pixels of the rectangle
 2-Invert. This inverts all of the pixels of the rectangle
 3-Black border. Draws a black perimeter not changing the inside
 4-White border. Draws a white perimeter not changing the inside
 5-Inverted border. Draws an inverted perimeter not changing the inside
 6-Black border, White inside.
 7-Black border, Inverted inside.
 8-White border, Black inside.
 9-White border, Inverted inside.
Pxl-On(
This turns a pixel on using coordinates (y,x)
Pxl-Off(
This turns a pixel off using coordinates (y,x)
Pxl-Change(
This inverts a pixel using coordinates (y,x)
ClrDraw
This clears the graph screen buffer and resets the text coordinates
ClrHome
This clears the home screen buffer and resets the cursor coordinates
Shade(
This sets the contrast to a value from 0 to 39. 24 is normal and this is not
permanent. An example is:
 :Shade(30
Horizontal
This draws a horizontal line on the graph. The syntax is:
 Horizontal y,method
y is a value from 0 to 63
method is how to draw the line:
 0=draws a white line
 1=draws a black line
 2=draws an inverted line
Vertical
This draws a vertical line on the graph. The syntax is:
 Vertical x,method

x is a value from 0 to 95
method is how to draw the line:
 0=draws a white line
 1=draws a black line
 2=draws an inverted line
Tangent(
This is used to shift the screen a number of pixels. The syntax is:
 Tangent(#ofShifts,Direction
of shifts is the number of pixels to shift the graph screen
Direction is represented as a number:
 1 = Down
 2 = Right
 4 = Left
 8 = Up
You can combine directions by adding the values. For example, Right and Up would
be 10 because 2+8=10
Text(
See Subject 11-Text(
(
Use this to read a byte of data from RAM
{
Use this two read a two byte value from RAM (little endian)
int(
Use this to write a byte of data to RAM.
iPart(
Use this to write a word of data to RAM, little endian (a word is 2 bytes). For
example, to set the first two bytes to 0 in prgmHI:
 :Get("EHI→A
 :iPart(A,0
Send(
Use this to create Appvars or programs of any size (so long as there is enough
memory). For example, to create prgmHI with 768 bytes:
 :Send(768,"EHI
Programs must be prefixed with "E", protected programs "F" and appvars "U"
Also, you can use lowercase letters if you want :)
i
This is the imaginary i. Use this to access OS real vars. For example, to read
OS var A and store it to Grammer var A:
 :iA→A
And to store a Grammer var to an OS var:
 :B'→iA
Fix Text(
Use this to set the typewriter delay. The larger the number, the slower the
typewriter text is displayed.
R▶Pr(
This will clear the particle buffer.
R▶Pθ(
This will recalculate the particle positions and draw them. If you want to
change the particle buffer, just add a pointer argument. If you want to use a

program, for example, as a buffer:
 :Get("EBUF→A
 :R▶Pθ(A-2
P▶Rx(
This will add a particle to the buffer. Just use the pixel coordinate position.
For example:
 :P▶Rx(2,2
P▶Ry(
This will cahnge the particle effect. 0 is normal sand, 1 is boiling.
Func
This is used to define an interrupt. Use this like prgm or Goto.
Disp
This will let you change the default graph buffer. For example, if you don't
want to use the graph screen, you can put this at the start of the program:
 :Disp Π9872 ;The pi symbol tells it to read as hexdecimal
Fix
Use this to set certain modes. For all the modes that you want set, add the
corresponding values together. For example, to enable inverse text and inverse
pixels, use Fix 1+2 or simply Fix 3
Here are the modes:
 1-Inverse text
 2-Inverse pixels. Now, on pixels mean white and off means black. In assembly
terms, it reads from the buffer, inverts the data and sends it to the LCD.

[
This allows you to write multiple bytes to a RAM location. For example, to write
some bytes to the address pointed to by A:
 :A[1,2,3,4
Fill(
 0-Black
 This fills the screen buffer with black pixels
 1-Invert
 This inverts the screen buffer
 2-Checker1
 This fills the screen buffer with a checkered pattern
 3-Checker2
 This fills the screen buffer with a second checkered pattern
 4,x-LoadBytePatternOR
 copies a byte to every byte of the buffer data with OR logic
 5,x-LoadBytePatternXOR
 copies a byte to every byte of the buffer data with XOR logic
 6,x-LoadBytePatternAND
 copies a byte to every byte of the buffer data with AND logic
 7,x-LoadBytePatternErase
 copies a byte to every byte of the buffer data with Erase logic
 (this isn't really a logic, but work with me here, folks!)
 8,x-BufCopy
 x points to another buffer. The current buffer gets copied there
 9,x-BufOR

 x points to another buffer. This gets copied to the current buffer with
 OR logic.
 10,x-BufAND
 x points to another buffer. This gets copied to the current buffer with
 AND logic.
 11,x-BufXOR
 x points to another buffer. This gets copied to the current buffer with
 XOR logic.
 12,x-BufErase
 x points to another buffer. This gets copied to the current buffer by
 erasing.
 13,x-BufSwap
 x points to a buffer. This swaps the current buffer with the other.
Full
This is used to set 15MHz mode. Alternatively, if you add a number to the end:
 Full0 sets 6MHz
 Full1 sets 15MHz
 Full2 toggles the speed
15MHz is only set if it is possible for the calc.

Math
• / is used to divide two numbers. The remainder is stored in theta prime.
• * is used to multiply two values. The lower 16 bits are stored to "Ans"

and the upper 16 bits (for the 32-bit value) are stored in theta prime.
• - is used to subtract two numbers. Numbers below 0 are calculated as if

65536 was added. For example, 3-6 would result in -3 which is 65536-3 or
65533. If the number goes below 0, theta prime is 1, else it is 0.

• + is used to add two numbers. If the number exceeds 65535, 65536 is
subtracted from it and theta prime is 1. Otherwise, theta prime is 0. For
example, 65534+99 would return 97, and theta prime as 1.

• 2 multiplies a number by itself
• √(takes the square root of the number
• √(' takes the rounded square root of the number
• sin(takes the sine of a number. This has a period of 256 and returns a

value from -127 to 127.
• cos(takes the cosine of a number. This has a period of 256 and returns a

value from -127 to 127.
• abs(returns the absolute value of a number. If the number is greater than

or equal to 32768 (2^15), this returns 65536 minus the number. For
example, abs(65533) would return 65536-65533=3.

• min(returns the lower of two values. For example, min(3,A) returns 3 if A
is larger than 3 or the value of A if A is less than 3.

• max(returns the larger of two values.
• gcd(returns the Greatest Common Divisor of two numbers
• lcm(returns the Least Common Multiple of two numbers
• nCr will perform the operation n choose r.

Logic
This will be explained in terms of "x (logic) y" where x and y are values

• = returns 1 if x is equal to y. Otherwise, it returns 0.
• < returns 1 if x is less than y. Otherwise, it returns 0.
• > returns 1 if x is greater than y. Otherwise, it returns 0.
• ≤ returns 1 if x is less than or equal to y. Otherwise, it returns 0.
• ≥ returns 1 if x is greater than or equal to y. Otherwise, it returns 0.
• ≠ returns 1 if x is not equal to y. Otherwise, it returns 0.

getKey Values
Creepily enough (I just checked), this is almost the exact size of my real calc
O.O That shows how much I use it... Anywho, you can use this as a guide to the
key values ouput by getKey in Grammer. For example, Clear=15

/ TI-84 Plus Silver Edition \
| Texas Instruments |

_ _ _ _ _ _ _ _ _ _		
/ 5 3 \ / 5 2 \ / 5 1 \ / 5 0 \ / 4 9 \		
_		
_ _ _ _ _ _ __	4	__
/ 5 4 \ / 5 5 \ / 5 6 \	2_ _3	
_ _ _ _ _ _	1	
/ 4 8 \ / 4 0 \ / 3 2 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 7 \ / 3 9 \ / 3 1 \ / 2 3 \ / 1 5 \		
_ _ _ _ _ _ _ _ _ _		
/ 4 6 \ / 3 8 \ / 3 0 \ / 2 2 \ / 1 4 \		
_ _ _ _ _ _ _ _ _ _		

| / 4 5 \ / 3 7 \ / 2 9 \ / 2 1 \ / 1 3 \ |
| _ _ _ _ _ _ _ _ _ _ |
| / 4 4 \ / 3 6 \ / 2 8 \ / 2 0 \ / 1 2 \ |
| _ _ _ _ _ _ _ _ _ _ |
| / 4 3 \ / 3 5 \ / 2 7 \ / 1 9 \ / 1 1 \ |
| _ _ _ _ _ _ _ _ _ _ |
| / 4 2 \ / 3 4 \ / 2 6 \ / 1 8 \ / 1 0 \ |
| _ _ _ _ _ _ _ _ _ _ |
| / \ / 3 3 \ / 2 5 \ / 1 7 \ / 0 9 \ |
\ Brie /

Also, there are the diagonal directions:
5=Down+Left
6=Down+Right
7=Up+Left
8=Up+Right
16=All directions mashed

Example Codes
I will hold nothing back and include all sorts of advanced tricks if I can :D
I am only doing this so that you can learn all sorts of neat optimisations and
get a better feel for the language. I will try to comment the crazy parts:
Here is a routine for a cursor:
Cursor Example
*use the arrows to move it, press clear to exit
 :.0:Asm(prgmGRAMMER
 :ClrDraw
 :0→X →Y ;There is a space after the "X"
 :Repeat A=15
 :Repeat 9 ;9 is never 0, so this will execute once
 :.. ;This is a label called "."
 :Line(X+1,Y,6,4,2 ;draws a rectangle to the buffer
 :Line(X,Y+1,4,6,2 ;Draws a rectangle to the buffer
 :End ;Ends a loop... and also a subroutine >.>
 :DispGraph ;Displays the buffer, updated
 :prgmLbl ". ;calls a subroutine at the label "."
 :Repeat A ;loops until A is not 0
 :getKey→A ;stores the key press to A
 :End ;Ends the repeat loop
 :X+A=3 ;Adds 1 to X if left is pressed
 :-A=2 ;subtracts 1 from Ans if right is pressed
 :If >90 ;If X=-1, it is 65535, so this checks both bounds
 :X ;If Ans would be off screen, just set it back
 :→X
 :Y+A=1
 :-A=4
 :If >58

 :Y
 :→Y
 :End
 :Stop

Questions and Answers
Since I started this project 10 May 2011 (2 days into summer

vacation), I haven't been able to get any kind of feedback, so I will make up
some fun questions for now :D
Q: I want to crash my calculator. How can Grammer help me do this?
A: Um, at the moment, the best way is to write data to random spots in memory.
Q: Can I have an example of that?
A: Sure, I guess...
 :Return→A
 :int(rand,-1 ;the -1 is an optimisation for 65535 :)
 :Goto A
 I cannot guarantee that this will crash, but it should make things volatile!
Q: I found a bug! What do I do?!
A: Pick it up gently and inspect it. Try to find what brought the bug to you and
let me know so that I can try to find it, too :)
Q: I have some ideas! Would you like to hear them?
A: Yes! I might not be able to implement them or I might have reasons to not
implement them, but if I can, I would love to! If you can think of a syntax,
too, that would be great!
Q: Can I take a look at the source?
A: Sure, I don't mind! However, if you want to release a modified version,
please inform the end user that it is modified and how these modifications
change program flow. For example, if you change Grammer to handle only 8 bit
values, I would be pretty confused when I get a bunch of bug reports about not
being able to use Goto and Return and whatnot properly :)
Q: <<Your question goes here>>
A: <<My response goes here>>

Thanks
General thanks go to the sites yAronet, tout82, TICalc, TI-Planet, and Omnimaga
for getting this attention. Thank you!

More specialised thanks go to:
yeongJIN_COOL from Omnimaga for all the help and interest so far! A lot of the
command tokens came from you, too, so thanks!
awalden0808 from Omnimaga for your interest and question asking!
boot2490 from Omnimaga for your enthusiasm and example ideas :D
Sorunome from Omnimaga (and Cemetech, I believe) for your interest and support
for Grammer and past projects (assuming I have the right person!)
Runer112 from Omnimaga for the help in optimisation and coding ideas (this is
the guy that performs magic with Axe :D)
Qwerty.55 (a.k.a. Fishbot) also from Omnimaga. Thanks for the tip on how to
remove particles quickly that have fallen off the screen!

http://www.omnimaga.org/index.php?action=profile;u=178
http://www.omnimaga.org/index.php?action=profile;u=2822
http://www.omnimaga.org/index.php?action=profile;u=1679
http://www.omnimaga.org/index.php?action=profile;u=2909
http://www.omnimaga.org/index.php?action=profile;u=1004
http://www.omnimaga.org/index.php?topic=9067.0
http://tiplanet.org/forum/viewtopic.php?t=8134
http://www.ticalc.org/archives/news/articles/14/147/147605.html
http://tout82.free.fr/forum/sujet.php?sujet=2781
http://www.yaronet.com/posts.php?s=142249

Grammer Diary
18 October 2011 (11:10)

Added the [token and I fixed up the Line(' routine to work well, now.
The line routine is from Axe and has been modified a bit to work with Grammer
(and has a few added features).
15 October 2011 (14:46)

Finally added in a system for modes. Currently there is inverse text
and inverse pixels.
15 October 2011 (11:29)

Added a call that saved a few hundred bytes. Was 5916 bytes, now it is
5825 bytes. I said a few hundred, so I must have added stuff, right? I added the
Fill(token with its 14 sub commands :)
14 October 2011 (22:52)

Changed the particle engine so that when a particle goes off screen,
it is removed from the buffer. You can now have an infinite waterfall so long as
it falls off the screen and your batteries last forever XD
14 October 2011 (11:13)

Added tons of neat features since then. Updated DispGraph and Text(
and fixed the space token. Added these:
(;Added to the readme
{ ;Added to the readme
int(;Added to the readme
iPart(;Added to the readme
Send(
i
Fix Text(
R▶Pr(
R▶Pθ(
P▶Rx(
P▶Ry(
Func
Disp
18 September 2011 (19:59)

Added Tangent(a few days ago, made lots of examples (including a

gravity simulator!). Also, I started work on the App version today which works
except where SMC is used. The official program syntax will now be to start
programs with .0:Asm(prgmGRAMMER because the . will make the rest of the line
get skipped (read as a label). Also, I was requested to start a TI-82/83
version, so I want to do that :) Finally, Grammer has been recognised by TICalc
as a valid programming language! There is now a directory for Grammer games and
programs :)
2 August 2011 (18:00)

Added Ä as a way to use hexadecimal inputs.
2 July 2011 (19:26)

An EnPro fan e-mailed me with a request for a sprite command that
could draw to pixel coordinates. Because of this, I have gotten to work on a
better sprite command and I decided to test drive it with Grammer... and it
works! It isn't as complete as I would like it to be (It doesn't have an option
for width or DataSwap), but it is much more user friendly than before. It can
only draw sprites 8 pixels wide and it does not clip the sprite. I left the
Width argument in case I can later add code to use it.
15 June 2011 (07:43)

I modified the sine/cosine routine to speed it up slightly. I
originally got the gist of the algorithm from Axe code, but I have since
remodeled it and optimised it so much that it only loosely resembles its
original form.
14 June 2011 (17:27)

After playing around with my other hobby (math), I wrote an algorithm
to compute nCr. The cool part about it is that it is a legitimate use of some of
the math that I research, so I feel useful ^-^. For the curious, this is a
polynomial time algorithm (no computing factorials). This is what the algorithm
looks like in Grammer Code as a subroutine. Inputs are N and R and the result is
output in D:
 :N-R→N
 :If <R
 :N→A R→N A→R ;Cuts down computation time
 :1→C →D
 :For(A,1,R
 :C*N
 :/A→C
 :+D→D
 :N+1→N
 :End
 :End ;Exits the subroutine
13 June 2011 (17:09)

Added the Repeat command as another loop command.
13 June 2011 (08:06)

Added the For(command as a new loop command.
12 June 2011 (22:24)

I added code to convert tokens to ASCII for cases like text display or
searching for a var. This means that named vars with lowercase letters (like
some appvars) can now be accessed and tokens are now displayed properly with the
text command. Also, I added the lcm(command and made a few mini games that

still need finishing touches.
11 June 2011 (14:08)

The prerelease never happened, but I have added in several new Text(
syntaxes to allow for displaying numbers, I added the Full command to allow
manipulation of the processor speed (set to 15MHz, 6MHz, or toggle), I added
ClrDraw, ClrHome, min(, max(, abs(, rand, gcd(, Shade(, Horizontal, Vertical
6 June 2011 (12:51)

Preparing for a pre release of Grammer... Also, I added a modified
circle routine that is fast O.O
4 June 2011 (16:45)

I decided to add in one of my square root routines as well as Pxl-On,
Pxl-Off, and Pxl-Change. I also made it so that the user could obtain the
rounded square root (rounded to the nearest whole) and I made the pixels not
draw if they were off screen. The first thing I did was make some circle sub
routines to play with :) Now I think I will try to make the sin/cos routines a
little more accurate by adding rounding to that, too...
1 June 2011 (19:48)

I randomely decided to add prgm as a method of executing sub routines.
I also added Pt-Off(as a "concept command" for a sprite routine that draws
variable size sprites to pixel coordinates. Currently it has a weird sprite data
syntax and the sprites need to be a multiple of 8 pixels wide, but it does draw
to pixel coordinates.
17 May 2011 (21:50)

I have been thinking about adding assembly support like this:
AsmPrgm will execute a simple hex opcode
AsmComp(will use multiple line support with whatever goodies I add. I have a
program that can compress and execute code like this that has comment support.
Maybe I will add support for labels and some instructions...
AsmComp(will load 5 pointer vars in a row (like R,S,T,U,V) into the register
pairs af,bc,de,hl,ix and then use an argument to execute a call in a jump table.
It will then return the values of the registers in the pointer vars. This will
likely be used only by me as a way to debug new routines.

These are only tentative. The first will probably be added, but if the
other two are added, they will likely be modified often and won't remain
backward compatible.
17 May 2011 (19:58)

I have been working on other projects, but I came back to this today.
I decided to try and make a text drawing routine that could draw to pixel
columns (instead of every fourth one). I started thinking of ways to do this
when I thought that making a general sprite routine would work better. The
problem? I've never made a sprite routine that worked on pixel columns. So I
started coming up with ideas for how to draw this and I thought that I could
make a general sprite routine for any size sprite that could be mapped to pixel
coordinates. To do that, I made a mask routine for masking the sprite data and
the screen data. However, I side tracked myself and ended up using the mask
routine as a way to make rectangle routines, so all that I accomplished was
that. I wrote it from scratch and it should be faster than the one I made for
BatLib because I draw the boxes as sprites, so I do not need to draw whole rows.
Plus, it works unlike some of the OS routines and it has 10 fill methods.

14 May 2011 (16:11)
After just getting back from a baby shower 15 minutes ago, I have

added reading and writing bytes and words. I plan to add the same ability for
nibbles, too, but for now, this should be great for modifying sprites and game
data.
14 May 2011 (11:00 ish)

I have now added While loops (that can be nested) as well as the Get(
command to start referencing OS variable data. I have also been putting some
work into the tutorial, but that is going to be a tad difficult. Pretty soon I
will need to add in some rectangle routines and text routines
13 May 2011 (almost noon)

I have been trying to tease out a bug that causes a crash every so
often. During program execution, there is no problem, but when it exits, it
crashes. Since some LCD stuff was going crazy, I wrote an LCD routine to display
the graph buffer and while I was at it, I decided to make a routine to test the
ON key (to use as a delay for the LCD writing). Now, I have a way to break out
of a program, but it didn't fix the crashing. I am going to see if it has
anything to do with the stack pointer...

--A half hour later--
... and this is why I need to practice with mnemonics. I had the hex comment
correct, but I had the mnemonic incorrect... For some reason, I was calling the
routine to display the graph buffer instead of jumping to it. I am going to see
if there is another bug there, though.

--Another half hour later--
... and this time it is corrected in full. What happened was in an If statement,
if the result was true, it jumped to the start of the program (where the address
of the start is pushed). I should have either jumped to a spot 11 bytes ahead or
used ret. I went with ret, this time. It worked before because the code
structure was a little different than it is now.
13 May 2011

After working out some kinks in the program flow and fixing up how
string arguments are handled, labels, strings, and commands with arguments will
work properly, now. I thought labels were working properly yesterday, but when I
decided to do Lbl "HELLO→A,it didn't work. After some debugging, I figured out
that it was looking for .HELLO→ as the label. I only figured out this was an
issue when I was testing out the new sprite command and I tried referencing a
label to source data from it. I did Pt-On(0,Lbl "HELLO",0,0,1,8 and it was
completely malfunctioning. I then found out that there was also the problem
that:

• Arguments weren't able to be read one after the other because the program
counter wasn't being updated properly

• The ending quote was being parsed as a starting quote.

I tried fixing the parsing first and my first few attempts failed. I ended up
doing things like making it so that only the last argument was read until I
figured out that I would need to include code before each consecutive read to
update the program counter (instead of making it update when it read a comma).

Fixing the string and label problem wasn't too bad and only required a few bytes

of code.

So, yeah, the details of the new sprite command are that it uses Pt-On(, has six
drawing methods. It uses byte data instead of nibble data

12 May 2011 (later)
Finished the Lbl command so now data referencing can be started! After

finally finishing up that SearchString routine (it was a lot simpler than I
thought it would be...), users can now use labels up to 764 bytes long, but
really, I should cap that to 10 or something x.x
12 May 2011

Today I have added few more things including:
Addition (with 1-bit carry)
Subtraction (with 1-bit carry)
Multiplication (with 16-bit carry)
"Squared" symbol (2) works (with 16-bit carry)
Logical operators like > and =
Negative (-)
sin(
cos(
If
If ... Then... End
getKey
End
"
I am also starting work on the Lbl command which will be very useful to have and
I also want to get started on graphics commands. If I finish Lbl, I will be able
to pretty easily implement some sprite commands *cough*
11 May 2011

Okay, actual progress was made besides planning and whatnot. The basic
outline of the program was started and I made my first real use of an assembler.
Thanks Kerm for your DCS SDK! I have finally managed to figure out how to
compile assembly source code and have it packaged as a program! Now I need to
figure out how to turn it into an App...

The current syntax allows the user to put the name of the var with
Grammer code in Ans (as a string) and then do Asm(prgmGRAMMER to start the
Grammer parser. It currently has Ans as a debugging tool (it displays a value)
and it can convert numbers to 2 byte integers. I also added division,
commenting, storing to and reading variables, DispGraph, Goto, and Return
10 May 2011

Progress on Grammer started after about a month of debating and ideas.

	Grammer Tutorial
	Introduction
	Terminology
	Pointer
	Sprites
	Strings
	Pointer Vars

	Subject 1-Numbers
	Subject 2-Math
	Subject 3-Logic
	Subject 4-If blocks
	Subject 5-Loops
	Repeat
	While
	For(

	Subject 6-Labels
	Subject 7-Code Flow
	Goto
	Return
	prgm

	Subject 8-Strings
	Subject 9-Sprites
	Sprite Data
	Sprite Logic
	Pt-On(
	Pt-Off(

	Subject 10-Sub Routines
	Subject 11-Text(
	Subject 12-Interrupts
	Subject 13-Data
	Subject 14-Particles

	Commands
	→
	//
	.
	"
	Ä
	!
	If x
	If... Then... End
	Return
	Goto
	Lbl x
	For(
	Pause
	Pause If
	While
	Repeat
	DispGraph
	getKey
	Get(
	prgm
	Circle(Y,X,R,Method
	Pt-Off(
	Pt-On(
	Line('
	Line(
	Pxl-On(
	Pxl-Off(
	Pxl-Change(
	ClrDraw
	ClrHome
	Shade(
	Horizontal
	Tangent(
	Text(
	(
	{
	int(
	iPart(
	Send(
	i
	Fix Text(
	R▶Pr(
	R▶Pθ(
	P▶Rx(
	P▶Ry(
	Func
	Disp
	Fix
	[
	Fill(
	Full
	Math
	Logic
	getKey Values

	Example Codes
	Cursor Example

	Questions and Answers
	Thanks
	Grammer Diary
	18 October 2011 (11:10)
	15 October 2011 (14:46)
	15 October 2011 (11:29)
	14 October 2011 (22:52)
	14 October 2011 (11:13)
	18 September 2011 (19:59)
	2 August 2011 (18:00)
	2 July 2011 (19:26)
	15 June 2011 (07:43)
	14 June 2011 (17:27)
	13 June 2011 (17:09)
	13 June 2011 (08:06)
	12 June 2011 (22:24)
	11 June 2011 (14:08)
	6 June 2011 (12:51)
	4 June 2011 (16:45)
	1 June 2011 (19:48)
	17 May 2011 (21:50)
	17 May 2011 (19:58)
	14 May 2011 (16:11)
	14 May 2011 (11:00 ish)
	13 May 2011 (almost noon)
	13 May 2011
	12 May 2011 (later)
	12 May 2011
	11 May 2011
	10 May 2011

